Background:The homologous recombination deficiency(HRD)score serves as a promising biomarker to iden-tify patients who are eligible for treatment with PARP inhibitors(PARPi).Previous studies have suggested a 3-biomark...Background:The homologous recombination deficiency(HRD)score serves as a promising biomarker to iden-tify patients who are eligible for treatment with PARP inhibitors(PARPi).Previous studies have suggested a 3-biomarker Genomic Instability Score(GIS)threshold of≥42 as a valid biomarker to predict response to PARPi in patients with ovarian cancer and breast cancer.However,the GIS threshold for prostate cancer(PCa)is still lacking.Here,we conducted an exploratory analysis to investigate an appropriate HRD score threshold and to evaluate its ability to predict response to PARPi in PCa patients.Methods:A total of 181 patients with metastatic castration-resistant PCa were included in this study.Tumor tissue specimens were collected for targeted next-generation sequencing for homologous recombination repair(HRR)genes and copy number variation(CNV)analysis.The HRD score was calculated based on over 50,000 single-nucleotide polymorphisms(SNP)distributed across the human genome,incorporating three SNP-based as-says:loss of heterozygosity,telomeric allelic imbalance,and large-scale state transition.The HRD score threshold was set at the last 5th percentile of the HRD scores in our cohort of known HRR-deficient tumors.The relation-ship between the HRD score and the efficacy in 16 patients of our cohort who received PARPi treatment were retrospectively analyzed.Results:Genomic testing was succeeded in 162 patients.In our cohort,61 patients(37.7%)had HRR mutations(HRRm).BRCA mutations occurred in 15 patients(9.3%).The median HRD score was 4(ranged from 0 to 57)in the total cohort,which is much lower than that in breast and ovarian cancers.Patients who harbored HRRm and BRCA or TP53 mutations had higher HRD scores.CNV occured more frequently in patients with HRRm.The last 5th percentile of HRD scores was 43 in the HRR-mutant cohort and consequently HRD high was defined as HRD scores≥43.In the 16 patients who received PARPi in our cohort,4 patients with a high HRD score achieved an objective response rate(ORR)of 100%while 12 patients with a low HRD score achieved an ORR of 8.3%.Progression-free survival(PFS)in HRD high patients was longer compared to HRD low patients,regardless of HRRm.Conclusions:A HRD score threshold of 43 was established and preliminarily validated to predict the efficacy of PARPi in this study.Future studies are needed to further verify this threshold.展开更多
Epidermal growth factor receptor(EGFR)is reportedly overexpressed in most esophageal squamous cell carcinoma(ESCC)patients,but anti-EGFR treatments offer limited survival benefits.Our preclinical data showed the promi...Epidermal growth factor receptor(EGFR)is reportedly overexpressed in most esophageal squamous cell carcinoma(ESCC)patients,but anti-EGFR treatments offer limited survival benefits.Our preclinical data showed the promising antitumor activity of afatinib in EGFR-overexpressing ESCC.This proof-of-concept,phase II trial assessed the efficacy and safety of afatinib in pretreated metastatic ESCC patients(n=41)with EGFR overexpression(NCT03940976).The study met its primary endpoint,with a confirmed objective response rate(ORR)of 39%in 38 efficacy-evaluable patients and a median overall survival of 7.8 months,with a manageable toxicity profile.Transcriptome analysis of pretreatment tumors revealed that neurotrophic receptor tyrosine kinase 2(NTRK2)was negatively associated with afatinib sensitivity and might serve as a predictive biomarker,irrespective of EGFR expression.Notably,knocking down or inhibiting NTRK2 sensitized ESCC cells to afatinib treatment.Our study provides novel findings on the molecular factors underlying afatinib resistance and indicates that afatinib has the potential to become an important treatment for metastatic ESCC patients.展开更多
The ubiquitin system is crucial for the development and fitness of higher plants.De-etiolation, during which green plants initiate photomorphogenesis and establish autotrophy, is a dramatic and complicated process tha...The ubiquitin system is crucial for the development and fitness of higher plants.De-etiolation, during which green plants initiate photomorphogenesis and establish autotrophy, is a dramatic and complicated process that is tightly regulated by a massive number of ubiquitylation/de-ubiquitylation events. Here we present site-specific quantitative proteomic data for the ubiquitylomes of de-etiolating seedling leaves of Zea mays L.(exposed to light for 1, 6, or 12 h)achieved through immunoprecipitation-based high-resolution mass spectrometry(MS). Through the integrated analysis of multiple ubiquitylomes, we identified and quantified 1926 unique ubiquitylation sites corresponding to 1053 proteins. We analyzed these sites and found five potential ubiquitylation motifs, KA, AXK, KXG, AK, and TK. Time-course studies revealed that the ubiquitylation levels of 214 sites corresponding to 173 proteins were highly correlated across two replicate MS experiments, and significant alterations in the ubiquitylation levels of 78 sites(fold change >1.5) were detected after de-etiolation for 12 h. The majority of the ubiquitylated sites we identified corresponded to substrates involved in protein and DNA metabolism, such as ribosomes and histones.Meanwhile, multiple ubiquitylation sites were detected in proteins whose functions reflect the major physiological changes that occur during plant de-etiolation, such as hormone synthesis/signaling proteins, key C4 photosynthetic enzymes, and light signaling proteins. This study on the ubiquitylome of the maize seedling leaf is the first attempt ever to study the ubiquitylome of a C4 plant and provides the proteomic basis for elucidating the role of ubiquitylation during plant de-etiolation.展开更多
基金supported by the National Natural Science Foundation of China(grant number:82303223)the Basic and Applied Basic Research Foundation of Guangdong Province(grant numbers:2021A1515220064,2022A1515110299)the Medical Scientific Re-search Foundation of Guangdong Province(grant number:A2022492).
文摘Background:The homologous recombination deficiency(HRD)score serves as a promising biomarker to iden-tify patients who are eligible for treatment with PARP inhibitors(PARPi).Previous studies have suggested a 3-biomarker Genomic Instability Score(GIS)threshold of≥42 as a valid biomarker to predict response to PARPi in patients with ovarian cancer and breast cancer.However,the GIS threshold for prostate cancer(PCa)is still lacking.Here,we conducted an exploratory analysis to investigate an appropriate HRD score threshold and to evaluate its ability to predict response to PARPi in PCa patients.Methods:A total of 181 patients with metastatic castration-resistant PCa were included in this study.Tumor tissue specimens were collected for targeted next-generation sequencing for homologous recombination repair(HRR)genes and copy number variation(CNV)analysis.The HRD score was calculated based on over 50,000 single-nucleotide polymorphisms(SNP)distributed across the human genome,incorporating three SNP-based as-says:loss of heterozygosity,telomeric allelic imbalance,and large-scale state transition.The HRD score threshold was set at the last 5th percentile of the HRD scores in our cohort of known HRR-deficient tumors.The relation-ship between the HRD score and the efficacy in 16 patients of our cohort who received PARPi treatment were retrospectively analyzed.Results:Genomic testing was succeeded in 162 patients.In our cohort,61 patients(37.7%)had HRR mutations(HRRm).BRCA mutations occurred in 15 patients(9.3%).The median HRD score was 4(ranged from 0 to 57)in the total cohort,which is much lower than that in breast and ovarian cancers.Patients who harbored HRRm and BRCA or TP53 mutations had higher HRD scores.CNV occured more frequently in patients with HRRm.The last 5th percentile of HRD scores was 43 in the HRR-mutant cohort and consequently HRD high was defined as HRD scores≥43.In the 16 patients who received PARPi in our cohort,4 patients with a high HRD score achieved an objective response rate(ORR)of 100%while 12 patients with a low HRD score achieved an ORR of 8.3%.Progression-free survival(PFS)in HRD high patients was longer compared to HRD low patients,regardless of HRRm.Conclusions:A HRD score threshold of 43 was established and preliminarily validated to predict the efficacy of PARPi in this study.Future studies are needed to further verify this threshold.
基金supported by the National Natural Science Foundation of China(No.92159106,82073230)the National Youth Top-Level Talent Support Program(“Ten Thousand Talents Scheme”)(12Y4962).
文摘Epidermal growth factor receptor(EGFR)is reportedly overexpressed in most esophageal squamous cell carcinoma(ESCC)patients,but anti-EGFR treatments offer limited survival benefits.Our preclinical data showed the promising antitumor activity of afatinib in EGFR-overexpressing ESCC.This proof-of-concept,phase II trial assessed the efficacy and safety of afatinib in pretreated metastatic ESCC patients(n=41)with EGFR overexpression(NCT03940976).The study met its primary endpoint,with a confirmed objective response rate(ORR)of 39%in 38 efficacy-evaluable patients and a median overall survival of 7.8 months,with a manageable toxicity profile.Transcriptome analysis of pretreatment tumors revealed that neurotrophic receptor tyrosine kinase 2(NTRK2)was negatively associated with afatinib sensitivity and might serve as a predictive biomarker,irrespective of EGFR expression.Notably,knocking down or inhibiting NTRK2 sensitized ESCC cells to afatinib treatment.Our study provides novel findings on the molecular factors underlying afatinib resistance and indicates that afatinib has the potential to become an important treatment for metastatic ESCC patients.
基金supported by the National Key R&D Program of China(Grant No.2016YFD0101003)the “Strategic Priority Research Program” of the Chinese Academy of Sciences(Grant No.XDA08010206)the Agricultural Science and Technology Innovation Program of Jilin Province “Discovery of excellent germplasms and cultivation of inbred lines suitable for mechanized harvesting in maize”(Grant No.CXGC2017JQ019).
文摘The ubiquitin system is crucial for the development and fitness of higher plants.De-etiolation, during which green plants initiate photomorphogenesis and establish autotrophy, is a dramatic and complicated process that is tightly regulated by a massive number of ubiquitylation/de-ubiquitylation events. Here we present site-specific quantitative proteomic data for the ubiquitylomes of de-etiolating seedling leaves of Zea mays L.(exposed to light for 1, 6, or 12 h)achieved through immunoprecipitation-based high-resolution mass spectrometry(MS). Through the integrated analysis of multiple ubiquitylomes, we identified and quantified 1926 unique ubiquitylation sites corresponding to 1053 proteins. We analyzed these sites and found five potential ubiquitylation motifs, KA, AXK, KXG, AK, and TK. Time-course studies revealed that the ubiquitylation levels of 214 sites corresponding to 173 proteins were highly correlated across two replicate MS experiments, and significant alterations in the ubiquitylation levels of 78 sites(fold change >1.5) were detected after de-etiolation for 12 h. The majority of the ubiquitylated sites we identified corresponded to substrates involved in protein and DNA metabolism, such as ribosomes and histones.Meanwhile, multiple ubiquitylation sites were detected in proteins whose functions reflect the major physiological changes that occur during plant de-etiolation, such as hormone synthesis/signaling proteins, key C4 photosynthetic enzymes, and light signaling proteins. This study on the ubiquitylome of the maize seedling leaf is the first attempt ever to study the ubiquitylome of a C4 plant and provides the proteomic basis for elucidating the role of ubiquitylation during plant de-etiolation.