Noninvasive X-ray imaging of nanoscale three-dimensional objects,such as integrated circuits(ICs),generally requires two types of scanning:ptychographic,which is translational and returns estimates of the complex elec...Noninvasive X-ray imaging of nanoscale three-dimensional objects,such as integrated circuits(ICs),generally requires two types of scanning:ptychographic,which is translational and returns estimates of the complex electromagnetic field through the IC;combined with a tomographic scan,which collects these complex field projections from multiple angles.Here,we present Attentional Ptycho-Tomography(APT),an approach to drastically reduce the amount of angular scanning,and thus the total acquisition time.APT is machine learning-based,utilizing axial self-Attention for Ptycho-Tomographic reconstruction.APT is trained to obtain accurate reconstructions of the ICs,despite the incompleteness of the measurements.The training process includes regularizing priors in the form of typical patterns found in IC interiors,and the physics of X-ray propagation through the IC.We show that APT with×12 reduced angles achieves fidelity comparable to the gold standard Simultaneous Algebraic Reconstruction Technique(SART)with the original set of angles.When using the same set of reduced angles,then APT also outperforms Filtered Back Projection(FBP),Simultaneous Iterative Reconstruction Technique(SIRT)and SART.The time needed to compute the reconstruction is also reduced,because the trained neural network is a forward operation,unlike the iterative nature of these alternatives.Our experiments show that,without loss in quality,for a 4.48×93.2×3.92µm^(3) IC(≃6×10^(8) voxels),APT reduces the total data acquisition and computation time from 67.96 h to 38 min.We expect our physics-assisted and attention-utilizing machine learning framework to be applicable to other branches of nanoscale imaging,including materials science and biological imaging.展开更多
基金We are grateful to Jung Ki Song,Mo Deng,Baoliang Ge,William Harrod,Ed Cole,Zachary Levine,Bradley Alpert,Nina Weisse-Bernstein,Lee Oesterling,and Antonio Orozco for helpful discussions and comments.Funding from the Intelligence Advanced Research Projects Activity,Office of the Director of National Intelligence(IARPA-ODNI),contract FA8650-17-C-9113 is gratefully acknowledged.The MIT SuperCloud and Lincoln Laboratory Supercomputing Center provided resources(high performance computing,database,consultation)that have contributed to the research results reported within this paperI.Kang acknowledges support from Korea Foundation for Advanced Studies(KFAS).This research used resources of the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility,operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,either expressed or implied,of the ODNI,IARPA,or the US Government.
文摘Noninvasive X-ray imaging of nanoscale three-dimensional objects,such as integrated circuits(ICs),generally requires two types of scanning:ptychographic,which is translational and returns estimates of the complex electromagnetic field through the IC;combined with a tomographic scan,which collects these complex field projections from multiple angles.Here,we present Attentional Ptycho-Tomography(APT),an approach to drastically reduce the amount of angular scanning,and thus the total acquisition time.APT is machine learning-based,utilizing axial self-Attention for Ptycho-Tomographic reconstruction.APT is trained to obtain accurate reconstructions of the ICs,despite the incompleteness of the measurements.The training process includes regularizing priors in the form of typical patterns found in IC interiors,and the physics of X-ray propagation through the IC.We show that APT with×12 reduced angles achieves fidelity comparable to the gold standard Simultaneous Algebraic Reconstruction Technique(SART)with the original set of angles.When using the same set of reduced angles,then APT also outperforms Filtered Back Projection(FBP),Simultaneous Iterative Reconstruction Technique(SIRT)and SART.The time needed to compute the reconstruction is also reduced,because the trained neural network is a forward operation,unlike the iterative nature of these alternatives.Our experiments show that,without loss in quality,for a 4.48×93.2×3.92µm^(3) IC(≃6×10^(8) voxels),APT reduces the total data acquisition and computation time from 67.96 h to 38 min.We expect our physics-assisted and attention-utilizing machine learning framework to be applicable to other branches of nanoscale imaging,including materials science and biological imaging.