The auxin signaling molecule controls a variety of growth and developmental processes in land plants. Auxin regulates gene expression through a nuclear auxin signaling pathway (NAP) consisting of the ubiquitin ligase ...The auxin signaling molecule controls a variety of growth and developmental processes in land plants. Auxin regulates gene expression through a nuclear auxin signaling pathway (NAP) consisting of the ubiquitin ligase auxin receptor TIR1/AFB, its Aux/IAA degradation substrate, and DNA-binding ARF transcription factors. Although extensive qualitative understanding of the pathway and its interactions has been obtained, mostly by studying the flowering plant Arabidopsis thaliana, it remains unknown how these translate to quantitative system behavior in vivo, a problem that is confounded by the large NAP gene families in most species. Here, we used the minimal NAP of the liverwort Marchantia polymorpha to quantitatively map NAP protein accumulation and dynamics in vivo through the use of knockin fluorescent fusion proteins. Beyond revealing the dynamic native accumulation profile of the entire NAP protein network, we discovered that the two central ARFs, MpARF1 and MpARF2, are proteasomally degraded. This auxin-independent degradation tunes ARF protein stoichiometry to favor gene activation, thereby reprogramming auxin response during the developmental progression. Thus, quantitative analysis of the entire NAP has enabled us to identify ARF degradation and the stoichiometries of activator and repressor ARFs as a potential mechanism for controlling gemma germination.展开更多
In plants,the antagonism between growth and defense is hardwired by hormonal signaling.The perception of pathogen-associatedmolecularpatterns(PAMPs)frominvadingmicroorganismsinhibits auxin signalingand plant growth.Co...In plants,the antagonism between growth and defense is hardwired by hormonal signaling.The perception of pathogen-associatedmolecularpatterns(PAMPs)frominvadingmicroorganismsinhibits auxin signalingand plant growth.Conversely,pathogens manipulate auxin signaling to promote disease,but how this hormone inhibits immunity is not fully understood.Ustilago maydis is a maize pathogen that induces auxin signaling in its host.We characterized a U.maydis effector protein,Naked1(Nkd1),that is translocated into the host nucleus.Through its native ethylene-responsive element binding factor-associated amphiphilic repression(EAR)motif,Nkd1 binds to the transcriptional co-repressors TOPLESS/TOPLESS-related(TPL/TPRs)and prevents the recruitment of a transcriptional repressor involved in hormonal signaling,leading to the derepression of auxin and jasmonate signaling and thereby promoting susceptibility to(hemi)biotrophic pathogens.A moderate upregulation of auxin signaling inhibits the PAMP-triggered reactive oxygen species(ROS)burst,an early defense response.Thus,our findings establish a clear mechanism for auxin-induced pathogen susceptibility.Engineered Nkd1 variants with increased expression or increased EAR-mediated TPL/TPR binding trigger typical salicylic-acid-mediated defense reactions,leading to pathogen resistance.This implies that moderate binding of Nkd1 to TPL is a result of a balancing evolutionary selection process to enable TPL manipulation while avoiding host recognition.展开更多
基金Netherlands Organisation for Scientific Research,the Netherlands(grants ALWOP.402 and OCENW.M20.031 to J.W.B.)Human Frontiers Research Program(grant RGP0015/2022 to D.W.).
文摘The auxin signaling molecule controls a variety of growth and developmental processes in land plants. Auxin regulates gene expression through a nuclear auxin signaling pathway (NAP) consisting of the ubiquitin ligase auxin receptor TIR1/AFB, its Aux/IAA degradation substrate, and DNA-binding ARF transcription factors. Although extensive qualitative understanding of the pathway and its interactions has been obtained, mostly by studying the flowering plant Arabidopsis thaliana, it remains unknown how these translate to quantitative system behavior in vivo, a problem that is confounded by the large NAP gene families in most species. Here, we used the minimal NAP of the liverwort Marchantia polymorpha to quantitatively map NAP protein accumulation and dynamics in vivo through the use of knockin fluorescent fusion proteins. Beyond revealing the dynamic native accumulation profile of the entire NAP protein network, we discovered that the two central ARFs, MpARF1 and MpARF2, are proteasomally degraded. This auxin-independent degradation tunes ARF protein stoichiometry to favor gene activation, thereby reprogramming auxin response during the developmental progression. Thus, quantitative analysis of the entire NAP has enabled us to identify ARF degradation and the stoichiometries of activator and repressor ARFs as a potential mechanism for controlling gemma germination.
基金The research leading to these results received funding from the European Research Council under the European Union Seventh Framework Pro-gramme ERC-2013-STG grant agreement 335691the Austrian Science Fund(FWF)P27818-B22,I 3033-B22+1 种基金the Austrian Academy of Sciences(OEAW)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy-EXC 2070-390732324.
文摘In plants,the antagonism between growth and defense is hardwired by hormonal signaling.The perception of pathogen-associatedmolecularpatterns(PAMPs)frominvadingmicroorganismsinhibits auxin signalingand plant growth.Conversely,pathogens manipulate auxin signaling to promote disease,but how this hormone inhibits immunity is not fully understood.Ustilago maydis is a maize pathogen that induces auxin signaling in its host.We characterized a U.maydis effector protein,Naked1(Nkd1),that is translocated into the host nucleus.Through its native ethylene-responsive element binding factor-associated amphiphilic repression(EAR)motif,Nkd1 binds to the transcriptional co-repressors TOPLESS/TOPLESS-related(TPL/TPRs)and prevents the recruitment of a transcriptional repressor involved in hormonal signaling,leading to the derepression of auxin and jasmonate signaling and thereby promoting susceptibility to(hemi)biotrophic pathogens.A moderate upregulation of auxin signaling inhibits the PAMP-triggered reactive oxygen species(ROS)burst,an early defense response.Thus,our findings establish a clear mechanism for auxin-induced pathogen susceptibility.Engineered Nkd1 variants with increased expression or increased EAR-mediated TPL/TPR binding trigger typical salicylic-acid-mediated defense reactions,leading to pathogen resistance.This implies that moderate binding of Nkd1 to TPL is a result of a balancing evolutionary selection process to enable TPL manipulation while avoiding host recognition.