期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Highly Luminescent Positively Charged Quantum Dots Interacting with Proteins and Cells
1
作者 Haixia Wang Karin Nienhaus +1 位作者 Li Shang Gerd Ulrich Nienhaus 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2022年第22期2685-2693,共9页
We have studied interactions between positively charged MUTAB-stabilized quantum dots(QDs)and model proteins,serum and live cells using fluorescence correlation spectroscopy(FCS),dynamic light scattering(DLS),time-res... We have studied interactions between positively charged MUTAB-stabilized quantum dots(QDs)and model proteins,serum and live cells using fluorescence correlation spectroscopy(FCS),dynamic light scattering(DLS),time-resolved photoluminescence(PL)and live-cell fluorescence imaging.Using human serum albumin(HSA)as a model protein,we measured the growth of a protein adsorption layer(“protein corona”)via time-resolved FCS.Corona formation was characterized by an apparent equilibrium dissociation coefficient,KD≈10μM.HSA adlayer growth was surprisingly slow(timescale ca.30 min),in stark contrast to many similar measurements with HSA and other proteins and different NPs.Time-resolved PL data revealed a characteristic quenching behavior depending on the QD surface coverage with HSA.Taken together,we found that MUTAB-QDs initially bind HSA molecules weakly(KD≈700μM);however,the affinity is enhanced over time,presumably due to proton injection into the MUTAB layer by HSA triggering ligand dissociation.This process was also observed with human blood serum,showing equal kinetics for comparable HSA concentration.Moreover,imaging experiments with cultured human cells(HeLa)revealed that MUTAB-QDs bind to the cell membrane and perforate it.This process is reduced upon pre-adsorption of proteins on the MUTAB-QD. 展开更多
关键词 Quantum dots NANOPARTICLES AGGLOMERATION Protein adsorption Quantitative fluorescence microscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部