PURPOSE:A phase Ⅱ study of bevacizumab(BVZ) plus irinotecan(CPT-11) was conducted in children with recurrent malignant glioma(MG) and intrinsic brainstem glioma(BSG).PATIENTS AND METHODS:Eligible patients received tw...PURPOSE:A phase Ⅱ study of bevacizumab(BVZ) plus irinotecan(CPT-11) was conducted in children with recurrent malignant glioma(MG) and intrinsic brainstem glioma(BSG).PATIENTS AND METHODS:Eligible patients received two doses of BVZ展开更多
Endocrine therapy using estrogen receptor-u (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated ...Endocrine therapy using estrogen receptor-u (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O^6-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB- 468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O^6- benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this dragresistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O^6-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O^6-benzylguanine also induced a specific loss of ER-a and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-a and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-a proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated. Fulvestrant enhanced the cytotoxicity of MGMT-targeted alkylating agents, namely, temozolomide and BCNU by 3 to 4-fold in ER-α positive cells, but not in ER-negative cells. We conclude that MGMT and ER-α proteins exist as a complex and are co-targeted for ubiquitin-conjugation and subsequent proteasomal degradation. The findings offer a clear rationale for combining alkylating agents with endocrine therapy.展开更多
Immunotherapy, while effective against lymphoid cancers and some solid tumors, has shown less benefit against pediatric brain tumors. Tumor heterogeneity, a suppressive immune microenvironment, and the blood-brain bar...Immunotherapy, while effective against lymphoid cancers and some solid tumors, has shown less benefit against pediatric brain tumors. Tumor heterogeneity, a suppressive immune microenvironment, and the blood-brain barrier have the potential to diminish any immune-based approach and limit efficacy. More importantly, most pediatric brain tumors are immunologically quiescent, stemming from a low mutational burden. This review focuses on innate vs. adaptive immunotherapeutic approaches and describes how the immunologic context of pediatric brain tumors can help identify well-suited immunotherapies for our patients. In this framework, we will discuss past and current approaches using virotherapy, immunoconjugates, monoclonal antibodies, active immunization, and adoptive cel-lular therapy, and share our thoughts on how immunotherapy can cure children with brain tumors.展开更多
文摘PURPOSE:A phase Ⅱ study of bevacizumab(BVZ) plus irinotecan(CPT-11) was conducted in children with recurrent malignant glioma(MG) and intrinsic brainstem glioma(BSG).PATIENTS AND METHODS:Eligible patients received two doses of BVZ
基金supported by grants from the Cancer Prevention Research Institute of Texas(RP130266)the Carson-Leslie Foundation and the Association for Research of Childhood Cancer
文摘Endocrine therapy using estrogen receptor-u (ER-α) antagonists for attenuating horm2one-driven cell proliferation is a major treatment modality for breast cancers. To exploit any DNA repair deficiencies associated with endocrine therapy, we investigated the functional and physical interactions of ER-α with O^6-methylguanine DNA methyltransferase (MGMT), a unique DNA repair protein that confers tumor resistance to various anticancer alkylating agents. The ER-α -positive breast cancer cell lines (MCF-7, T47D) and ER- negative cell lines (MDAMB- 468, MDAMB-231), and established inhibitors of ER-α and MGMT, namely, ICI-182,780 (Faslodex) and O^6- benzylguanine, respectively, were used to study MGMT- ER interactions. The MGMT gene promoter was found to harbor one full and two half estrogen-responsive elements (EREs) and two antioxidant-responsive elements (AREs). MGMT expression was upregulated by estrogen, downregulated by tamoxifen in Western blot and promoter-linked reporter assays. Similarly, both transient and stable transfections of Nrf-2 (nuclear factor-erythroid 2-related factor-2) increased the levels of MGMT protein and activity 3 to 4-fold reflecting novel regulatory nodes for this dragresistance determinant. Of the different ER-α antagonists tested, the pure anti-estrogen fulvestrant was most potent in inhibiting the MGMT activity in a dose, time and ER-α dependent manner, similar to O^6-benzylguanine. Interestingly, fulvestrant exposure led to a degradation of both ER-α and MGMT proteins and O^6-benzylguanine also induced a specific loss of ER-a and MGMT proteins in MCF-7 and T47D breast cancer cells with similar kinetics. Immunoprecipitation revealed a specific association of ER-a and MGMT proteins in breast cancer cells. Furthermore, silencing of MGMT gene expression triggered a decrease in the levels of both MGMT and ER-a proteins. The involvement of proteasome in the drug-induced degradation of both proteins was also demonstrated. Fulvestrant enhanced the cytotoxicity of MGMT-targeted alkylating agents, namely, temozolomide and BCNU by 3 to 4-fold in ER-α positive cells, but not in ER-negative cells. We conclude that MGMT and ER-α proteins exist as a complex and are co-targeted for ubiquitin-conjugation and subsequent proteasomal degradation. The findings offer a clear rationale for combining alkylating agents with endocrine therapy.
文摘Immunotherapy, while effective against lymphoid cancers and some solid tumors, has shown less benefit against pediatric brain tumors. Tumor heterogeneity, a suppressive immune microenvironment, and the blood-brain barrier have the potential to diminish any immune-based approach and limit efficacy. More importantly, most pediatric brain tumors are immunologically quiescent, stemming from a low mutational burden. This review focuses on innate vs. adaptive immunotherapeutic approaches and describes how the immunologic context of pediatric brain tumors can help identify well-suited immunotherapies for our patients. In this framework, we will discuss past and current approaches using virotherapy, immunoconjugates, monoclonal antibodies, active immunization, and adoptive cel-lular therapy, and share our thoughts on how immunotherapy can cure children with brain tumors.