期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of Blast Furnace Sludge (BFS) Characteristics on Suitable Recycling Process Determining 被引量:1
1
作者 Mamdouh Omran Timo Fabritius Timo Paananen 《Journal of Minerals and Materials Characterization and Engineering》 2017年第4期185-197,共13页
The present study aims to give a detailed characterization of blast furnace sludge (BFS) by using different techniques, in order to determine the most effective recycling method to recover valuable metals from this wa... The present study aims to give a detailed characterization of blast furnace sludge (BFS) by using different techniques, in order to determine the most effective recycling method to recover valuable metals from this waste. BFS is composed mainly of hematite, as its iron-bearing phase, and carbon, in addition to fractions of silicate and carbonate materials. The studied BFS shows relatively high contents of iron (Fe) (390 g.kg-1), and carbon (C) (290 g.kg-1), due to abundance of hematite and coke, while the concentration of zinc (Zn) (2.5 g.kg-1) is low. The XRD analyses indicated that, hematite is more concentrated in the fine fraction (<20 μm), while the coarser fraction (90 - 250 μm) is dominated by calcite, quartz and X-ray amorphous coke. SEM-EDX analyses confirmed that particles rich in iron and zinc were detected in the fine fraction (<20 μm) of the sludge. Due to high Fe and C content in BFS, it can be utilized as self-reducing material and briquetting represent a potential method for recycling of blast furnace sludge. 展开更多
关键词 BLAST FURNACE SLUDGE (BFS) Characterization RECYCLING
下载PDF
Microwave Assisted Liberation of High Phosphorus Oolitic Iron Ore 被引量:2
2
作者 Mamdouh Omran Timo Fabritius +4 位作者 Nagui Abdel-Khalek Mortada El-Aref Abd El-Hamid Elmanawi Mahmoud Nasr Ahmed Elmahdy 《Journal of Minerals and Materials Characterization and Engineering》 2014年第5期414-427,共14页
The influence of microwave treatment on the liberation of iron ore from the high phosphorus oolitic iron ore from Aswan region, Egypt was studied. The effect of microwave power, exposure time and grain size on the lib... The influence of microwave treatment on the liberation of iron ore from the high phosphorus oolitic iron ore from Aswan region, Egypt was studied. The effect of microwave power, exposure time and grain size on the liberation of iron ore was investigated. The microfractures and cracks of the samples were characterized before and after microwave treatments. The heating rate of high phosphorus oolitic iron ore was studied. Crystallinity of hematite was characterized before and after microwave pretreatment. The results indicated that intergranular fractures formed between the gangues (fluorapatite and chamosite) and hematite after microwave treatment, leading to improved liberation of iron ore and a significant reduction in comminution energy. Percentages of fraction ≤ -0.125 mm increased from 46.6% to 59.76% with increased exposure time from 0 to 60 seconds. The heating rate of iron ore showed that microwave treatment was less efficient at smaller particle sizes for a fixed applied power density. Crystallinity of hematite increased with the microwave exposure time. 展开更多
关键词 MICROWAVE Treatment High PHOSPHORUS Oolitic IRON ORE LIBERATION
下载PDF
Fe-Si particles on the surface of blast furnace coke
3
作者 Stanislav S.Gornostayev Eetu-Pekka Heikkinen +1 位作者 Jyrki J.Heino Timo M.J.Fabritius 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第7期697-703,共7页
This study investigates the surface of unpolished samples of blast furnace (BF) coke drilled from the tuyere zone, which hosts Fe-Si particles (mostly Fe3Si) that vary in size, shape, depth of submersion (penetra... This study investigates the surface of unpolished samples of blast furnace (BF) coke drilled from the tuyere zone, which hosts Fe-Si particles (mostly Fe3Si) that vary in size, shape, depth of submersion (penetration) into the coke matrix, and contact features with the surface. Based on the shape of the particles and the extent of their contact with the coke matrix, they have been grouped into three major types: (I) sphere-like droplets with limited contact area, (II) semi-spheres with a larger contact area, and (III) irregular segregations with a spherical surface, which exhibit the largest contact area among the three types of particles. Considering the ratio between the height (h) of the particles and half of their length at the surface level (/) along the cross-section, these three types can be characterized as follows: (I) h 〉/, (II) h ~/, and (1II) h 〈/. All the three types of particles can be found near each other. The shape and the extent of the contact depend on the de- gree of penetration of the material into the matrix, which is a function of the composition of the particles. Type (I) particles were initially saturated with Si at an earlier stage and, for that reason, they can react less with carbon in the coke matrix than type (II) and (III), thereby moving faster through the coke cone. Thermodynamic calculations have shown that the temperature interval of 1250-1300~C can be consid- ered the starting point for Si entering into molten iron under quartz-dominated coke ash. Accordingly, the initial pick-up of Si by molten iron can be assumed to be mineral-related. In terms of BF practice, better conditions for sliding Fe-Si droplets through the coke cone are available when they come into contact with free SiO2 concentrated into small grains, and when the SiO2/∑MexOy mass ratio in the coke ash is high. 展开更多
关键词 blast furnace practice metallurgical coke molten iron iron silicide
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部