The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ...The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ratio up to 2.5 contributes to the formation of Mg2Ca phase at the grain boundaries and CaMgSn in the matrix, while a ratio of 3 gives only CaMgSn phase mostly in the matrix. While the compressive strength decreases with the increase in temperature, for Sn/Ca up to 2.5, a plateau occurs in 100-175 °C, which is attributed to the strengthening by Mg2Ca. However, for ratio of 3, the strength is lower and decreases more gradually. Mg-3Sn-2Ca (TX32) has the highest strength and the addition of 0.4%Al increases its strength but simultaneous addition of Si lowers the strength. Likewise, the addition of Zn improves its strength but simultaneous addition of Al slightly decreases the strength. The results are correlated with the types of intermetallic phases that form in various alloys.展开更多
A cup-shaped component of Mg-4 Al-2 Ba-2 Ca(ABa X422) alloy was forged in the temperature range of 300-500 °C and at speeds in the range of 0.01-10 mm/s with a view to validate the processing map and study the ...A cup-shaped component of Mg-4 Al-2 Ba-2 Ca(ABa X422) alloy was forged in the temperature range of 300-500 °C and at speeds in the range of 0.01-10 mm/s with a view to validate the processing map and study the microstructural development. The process was simulated through finite-element method to estimate the local and average strain rate ranges in the forging envelope. The processing map exhibited two domains in the following ranges:(1) 300-390 °C and 0.0003-0.001 s^-1, and(2) 400-500 °C and 0.0003-0.3 s^-1 and both represented dynamic recrystallization(DRX). The map revealed a wide flow instability regime at higher strain rates and temperatures lower than 400 °C, in which flow localization occurred. Forgings produced under conditions of the above two domains were sound and symmetrical, and had finer grain sizes when being forged in the first domain. However, when being forged in the flow instability regimes, the alloy fractured before the final shape was reached. The experimental load-stroke curves for the conditions within the domains correlated well with the simulated ones, whereas the curves obtained in the instability regime were uneven.展开更多
基金supported by General Research Funds (Projects#115108 and#114809) from the Research Grants Council of the Hong Kong SAR,China
文摘The effect of Sn, Ca, Al, Si and Zn addition on the compressive strength of cast Mg-Sn-Ca (TX) alloys was studied in the temperature range of 25-250 °C and correlated with the microstructure. The Sn to Ca mass ratio up to 2.5 contributes to the formation of Mg2Ca phase at the grain boundaries and CaMgSn in the matrix, while a ratio of 3 gives only CaMgSn phase mostly in the matrix. While the compressive strength decreases with the increase in temperature, for Sn/Ca up to 2.5, a plateau occurs in 100-175 °C, which is attributed to the strengthening by Mg2Ca. However, for ratio of 3, the strength is lower and decreases more gradually. Mg-3Sn-2Ca (TX32) has the highest strength and the addition of 0.4%Al increases its strength but simultaneous addition of Si lowers the strength. Likewise, the addition of Zn improves its strength but simultaneous addition of Al slightly decreases the strength. The results are correlated with the types of intermetallic phases that form in various alloys.
基金fully supported by Strategic Research Grant (Project #7002744) from the City University of Hong Kong, China
文摘A cup-shaped component of Mg-4 Al-2 Ba-2 Ca(ABa X422) alloy was forged in the temperature range of 300-500 °C and at speeds in the range of 0.01-10 mm/s with a view to validate the processing map and study the microstructural development. The process was simulated through finite-element method to estimate the local and average strain rate ranges in the forging envelope. The processing map exhibited two domains in the following ranges:(1) 300-390 °C and 0.0003-0.001 s^-1, and(2) 400-500 °C and 0.0003-0.3 s^-1 and both represented dynamic recrystallization(DRX). The map revealed a wide flow instability regime at higher strain rates and temperatures lower than 400 °C, in which flow localization occurred. Forgings produced under conditions of the above two domains were sound and symmetrical, and had finer grain sizes when being forged in the first domain. However, when being forged in the flow instability regimes, the alloy fractured before the final shape was reached. The experimental load-stroke curves for the conditions within the domains correlated well with the simulated ones, whereas the curves obtained in the instability regime were uneven.