To stay globally competitive, manufacturing companies are increasingly under pressure to bring new products and applications to market, improve existing products, and discover new technologies to produce them at a low...To stay globally competitive, manufacturing companies are increasingly under pressure to bring new products and applications to market, improve existing products, and discover new technologies to produce them at a lower price. New technological findings can enable companies to overcome these challenges. In practice, technology development associated with a long time horizon is often given a lower priority compared with short-term focused product development thus being stronger restricted by everyday business. More and more companies separate their technology development department from product development to promote technological innovations. Due to this additional interface in the R&D organization new problems arise, resulting in technologies not being implemented in products. The reasons for these problems amongst others concern wrong timing for the transfer or inadequate definition of responsibilities. In this paper of ongoing research, authors introduce a framework to design the transfer processes between technology development and product development. Although there are a number of options for designing the operative transfer, there is no regulatory framework specifying which configuration options are at this particular interface. The approach is to develop a model, which is able to design different company-specific transfer processes taking into account the object being transferred at this interface. Thus, for different objects to be transferred, different transfer processes are designed. The model's aim is to enable responsibility of the R&D management to design their company-specific transfer processes to enable more technologies being implemented into products, thus giving the whole company the possibility to act more innovatively.展开更多
In vitro meat production system is the production of meat outside the food animals by culturing the stem cells derived from farm animals inside the bioreactor by using advanced tissue engineering techniques. Besides w...In vitro meat production system is the production of meat outside the food animals by culturing the stem cells derived from farm animals inside the bioreactor by using advanced tissue engineering techniques. Besides winning the favour of animal rights activists for its humane production of meat, in vitro meat production system also circumvents many of the issues associated with conventional meat production systems, like excessively brutal slaughter of food animals, nutrition-related diseases, foodborne illnesses, resource use, antibiotic-resistant pathogen strains, and massive emissions of methane that contribute to global warming. As the conditions in an in vitro meat production system are controlled and manipulatable, it will be feasible to produce designer, chemically safe and disease-free meat on sustainable basis. However, many challenges are to be faced before cultured meat becomes commercially feasible. Although, the production cost and the public acceptance are of paramount importance, huge funds are desperately required for further research in the field.展开更多
Grassland is the important component of the terrestrial ecosystems. Estimating net primary productivity (NPP) of grassland ecosystem has been a central focus in global climate change researches. To simulate the gras...Grassland is the important component of the terrestrial ecosystems. Estimating net primary productivity (NPP) of grassland ecosystem has been a central focus in global climate change researches. To simulate the grassland NPP in southern China, we built a new climate productivity model, and validated the model with the measured data from different years in the past. The results showed that there was a logarithmic correlation between the grassland NPP and the mean annual temperature, and there was a linear positive correlation between the grassland NPP and the annual precipitation in southern China. Al these results reached a very signiifcant level (P〈0.01). There was a good correlation between the simulated and the measured NPP, withR2 of 0.8027, reaching the very signiifcant level. Meanwhile, both root mean square errors (RMSE) and relative root-mean-square errors (RRMSE) stayed at a relatively low level, showing that the simulation results of the model were reliable. The NPP values in the study area had a decreasing trend from east to west and from south to north, and the mean NPP was 471.62 g C m?2 from 2000 to 2011. Additionaly, there was a rising trend year by year for the mean annual NPP of southern grassland and the tilt rate of the mean annual NPP was 3.49 g C m?2 yr?1 in recent 12 years. The above results provided a new method for grassland NPP estimation in southern China.展开更多
In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the wh...In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.展开更多
Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on gr...Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.展开更多
The waxy gene(Wx) in rice, which encodes the granule bound starch synthase enzyme, is responsible for amylose synthesis. Glutinous(sticky) rice has little or no amylose that can be used in various applications, such a...The waxy gene(Wx) in rice, which encodes the granule bound starch synthase enzyme, is responsible for amylose synthesis. Glutinous(sticky) rice has little or no amylose that can be used in various applications, such as brewing. In this study, knockout of the Wx gene with CRISPR/Cas9 technology was conducted in two elite japonica rice lines, Huaidao 5(HD5) and Suken 118(SK118), aiming to develop elite sticky rice varieties. We achieved six homozygous T_0 plants with more than 200 bp deletion in the Wx gene, as well as 36 wx-HD5 and 18 wx-SK118 homozygous transgene-free plants in the T_1 generation. The seeds of all the mutants were white and opaque, similar to those of sticky rice, and contained only 2.6%–3.2% amylose. Results of scanning electron microscopy showed that the quality of rice did not change. In conclusion, we successfully developed two elite sticky rice varieties.展开更多
Rice(Oryza sativa)provides a staple food source for more than half the world population.However,the current pace of rice breeding in yield growth is insufficient to meet the food demand of the everincreasing global po...Rice(Oryza sativa)provides a staple food source for more than half the world population.However,the current pace of rice breeding in yield growth is insufficient to meet the food demand of the everincreasing global population.Genomic selection(GS)holds a great potential to accelerate breeding progress and is cost-effective via early selection before phenotypes are measured.Previous simulation and experimental studies have demonstrated the usefulness of GS in rice breeding.However,several affecting factors and limitations require careful consideration when performing GS.In this review,we summarize the major genetics and statistical factors affecting predictive performance as well as current progress in the application of GS to rice breeding.We also highlight effective strategies to increase the predictive ability of various models,including GS models incorporating functional markers,genotype by environment interactions,multiple traits,selection index,and multiple omic data.Finally,we envision that integrating GS with other advanced breeding technologies such as unmanned aerial vehicles and open-source breeding platforms will further improve the efficiency and reduce the cost of breeding.展开更多
A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste g...A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry.The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically.The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time.The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process.Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology.展开更多
The reduction of CO2 emission is crucial for the mitigation of climate change.A considerable amount of industrial CO2 can be absorbed in the form of carbonates through high-temperature sorption processes.In this regar...The reduction of CO2 emission is crucial for the mitigation of climate change.A considerable amount of industrial CO2 can be absorbed in the form of carbonates through high-temperature sorption processes.In this regard,the efficient conversion of carbonates to value-added products will provide an economically viable method for the sustainable usage of carbon compounds.Herein,we report a promising solution involving the use of a glycerol and ethanol mixture as a hydrogen donor in the dry reforming process with CaCO3 to produce syngas.A series of metal active components,including Ni,Fe,Co,Cu,Pt,Pd,Ru,and Rh,was used to promote this reaction.Ni showed comparable performance with that of Pd,but outperformed Co,Fe,Cu,Rh,Ru,and Pt.Approximately 100%conversion of glycerol and ethanol,~92%selectivity of synthesis gas(H2 and CO),and a H2/CO ratio of^1.2 were achieved over CaCO3 containing10 wt%Ni(10Ni-CaCO3).Meanwhile,the CO2 concentration was less than 5 vol%,indicating that most of the CO2 captured by the carbonate can be transformed into chemicals;however,they cannot simply be emitted.The CO2 released from the decomposition of CaCO3 not only adjusted the ratio of H2 to CO but also eliminated cokes to guarantee the CO2 absorption-conversion cyclic stability in the absence of steam and at high temperatures.展开更多
Objective:To screen crude extracts of propolis,bee pollen and honey from four stingless bee species[Trigona incisa(T.incisa)],Timia apicalis,Trigona fuso-baltata and Trigona filscibasis)native to East Kalimantan.Indon...Objective:To screen crude extracts of propolis,bee pollen and honey from four stingless bee species[Trigona incisa(T.incisa)],Timia apicalis,Trigona fuso-baltata and Trigona filscibasis)native to East Kalimantan.Indonesia for cytotoxic activity against five human cancer cell lines(HepG2,SW620,ChaGo-1,KATO-Ⅲand BT474).Methods:All samples were extracted with methanol,and then subpartitioned with n-hexane and ethyl acetate.Each crude extract was screened at 20μg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Tn addition,four previously shown bioactive components from propolis(apigenin,cafieic acid phenyl ester,kaempferol and naringenin)and two chemotherapeutic drugs(doxorubicin and 5-fluorouracil)were used to evaluate the sensitivity of the cell lines.Results:Overall,crude extracts from propolis and honey had higher cytotoxic activities than bee pollen,but the activity was dependent upon the extraction solvent,bee species and cell line.Propolis extracts from T.incisa and Tarda apicalis showed the highest and lowest cytotoxic activity,respectively.Only the HepG2 cell line was broadly sensitive to the honey extracts.For pure compounds,doxorubicin was the most cytotoxic,the four propolis compounds the least,but the ChaGo-I cell line was sensitive to kaempferol at 10μg/mL and KATO-Ⅲwas sensitive to kaempferol and apigenin at 10μg/mL,.All pure compounds were effective against the BT474 cell line.Conclusions:Propolis from f,incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines.Further study is required,including the isolation and characterization of the active antiproliferative agent(s).展开更多
Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstru...Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstructure of the brazed joint with BNi-2 filler metal is studied by means of scanning electron microscopy ( SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the structure of brazed seam consists of a large amount of Ni- based γ solid solution, Ni3Al ( γ') , Ni3B, WB, CrB, and a small quantity of WC, NbC, The maximum shear strength of the joint is 398 MPa when the beam current of welding is 2.6 mA, heating time is 480 s and focused current is 1 800 mA.展开更多
Nuclear factor Y(NF-Y),a group of conserved transcription-factor complexes that consist of NF-YA,B,and C subunits,is essential for developmental regulation and for responses to environmental changes in eukaryotes.We p...Nuclear factor Y(NF-Y),a group of conserved transcription-factor complexes that consist of NF-YA,B,and C subunits,is essential for developmental regulation and for responses to environmental changes in eukaryotes.We previously found that some NF-Y genes,such as OsNF-YA8,were expressed specifically in the endosperm of rice.In the present study,overexpression of OsNF-YA8 in rice resulted in reduced plant height due to suppressed cell elongation in internodes.Gibberellin(GA)biosynthetic genes,including OsCPS1,OsGA20ox1,and OsGA20ox2,were down-regulated.OsNF-YA8 bound to the promoters of these genes to repress their expression.Endogenous GA content was decreased in OsNF-YA8 overexpressors,whose dwarf phenotype could be partially rescued by exogenous GA treatment.The findings suggested that ectopic expression of OsNF-YA8 causes defective GA biosynthesis in vegetative stage.Heading date in OsNF-YA8 overexpressors was delayed,especially under short-day conditions.OsNFYA8 bound to the promoter of Heading Date 3a(Hd3a),the florigen gene in rice,to negatively regulate flowering.Either ectopic activation or knockout of OsNF-YA8 impaired seed development,as indicated by reduced seed size and increased grain chalkiness.These results suggest that ectopic expression of the endosperm-specific OsNF-YA8 in rice disrupts both vegetative and reproductive development.展开更多
Study was conducted to assess the possible transfer of heavy metals from livestock feeds to animal products. In experiment-l, samples (n = 503) collected from conventional farms in Central Greece were analysed for h...Study was conducted to assess the possible transfer of heavy metals from livestock feeds to animal products. In experiment-l, samples (n = 503) collected from conventional farms in Central Greece were analysed for heavy metal Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb), Nickel (Ni) and Chromium (Cr) contents in muscle tissues, livers, kidneys, excremental and basic mixtures in livestock such as cows and sheep. Results showed that transfer of heavy metal contaminants from feed to animal products fluctuated below the permissible risk levels. In experiment 2, samples (n = 440) of feedstuffs used in different feeding regimens and seasons at different livestock farms [sheep (n = 140), dairy cows (n = 180), pigs (n = 120)] were collected. Results showed that relatively high concentration of Cu in the excrements of pigs (155 + 9.13) and Zn in the excrements of sheep (144.56 + 5.78) are explained by the use of Cu in the diet of developing piglets and sheep. Ovine showed higher concentration ofNi, Cr, and Pb in their excrements, while, the concentration of heavy metals in forages was under the allowed range to the EU legislation.展开更多
This paper deals with the production-dependent failure rates for a hybrid manufacturing/remanufacturing system subject to random failures and repairs. The failure rate of the manufacturing machine depends on its produ...This paper deals with the production-dependent failure rates for a hybrid manufacturing/remanufacturing system subject to random failures and repairs. The failure rate of the manufacturing machine depends on its production rate, while the failure rate of the remanufacturing machine is constant. In the proposed model, the manufacturing machine is characterized by a higher production rate. The machines produce one type of final product and unmet demand is backlogged. At the expected end of their usage, products are collected from the market and kept in recoverable inventory for future remanufacturing, or disposed of. The objective of the system is to find the production rates of the manufacturing and the remanufacturing machines that would minimize a discounted overall cost consisting of serviceable inventory cost, backlog cost and holding cost for returns. A computational algorithm, based on numerical methods, is used for solving the optimality conditions obtained from the application of the stochastic dynamic programming approach. Finally, a numerical example and sensitivity analyses are presented to illustrate the usefulness of the proposed approach. Our results clearly show that the optimal control policy of the system is obtained when the failure rates of the machine depend on its production rate.展开更多
This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal we...This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells.Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs.In a significant departure from these models,our approach incorporates an initiation pressure gradient and a discrete fracture seepage network,providing a more realistic representation of the seepage process.The model also integrates an enhanced fluid-solid interaction,which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir.This is achieved through the incorporation of improved permeability and stress coupling,leading to more precise predictions of reservoir behavior.The numerical solutions derived from the model are obtained through the sophisticated finite element method,ensuring high accuracy and computational efficiency.To ensure the model’s reliability and accuracy,the outcomes were tested against a real-world case,with results demonstrating strong alignment.A key revelation from the study is the significant difference between uncoupled and fully coupled volumetrically fractured horizontal wells,challenging conventional wisdom in the field.Additionally,the study delves into the effects of stress,fracture length,and fracture number on reservoir production,contributing valuable insights for the design and optimization of tight reservoirs.The findings from this study have the potential to revolutionize the field of tight reservoir prediction and management,offering significant advancements in petroleum engineering.The proposed approach brings forth a more nuanced understanding of tight reservoir systems and opens up new avenues for optimizing reservoir management and production.展开更多
In this study, yak bone collagen hydrolysate(YBCH)was produced by mixed proteases and provided to standard-diet mice at a different dose(low dose(LD), medium dose(MD), and high dose(HD))to investigate its effects on t...In this study, yak bone collagen hydrolysate(YBCH)was produced by mixed proteases and provided to standard-diet mice at a different dose(low dose(LD), medium dose(MD), and high dose(HD))to investigate its effects on the composition of gut microbiota and short-chain fatty acids(SCFA)production. It was found that YBCH was mainly composed of small molecular peptides whose molecular weight below 2 000 Da. Notably, supplementation with different doses of YBCH could significantly downregulate the ratio of Firmicutes to Bacteroidetes in the fecal microbiota. At the family level, the Lachnospiraceae abundance was significantly reduced in the YBCH gavage groups(mean reduction ratio 41.7 %, 35.2%, and 36.4% for LD, MD, and HD group, respectively). The predicted functions of gut microbes in the MD group were significantly increased at “lipid metabolism” and “glycan biosynthesis and metabolism”. Moreover, the SCFA production in the YBCH groups was elevated. Especially, the concentration of acetic acid, propionic acid, and butyric acid in the MD group was separately increased 79.7%, 89.2%, and 78.8% than that in the NC group. These results indicated that YBCH might be applied in the development of functional food for intestinal microecological regulation.展开更多
A new process is developed by using compound Mn as intermediate to produce Cl2from HCl,with the following steps.(1)HCl steam is decomposed by intermediate Mn2O3to produce Cl2and Mn Cl2at 500°C.(2)Produced Mn Cl2i...A new process is developed by using compound Mn as intermediate to produce Cl2from HCl,with the following steps.(1)HCl steam is decomposed by intermediate Mn2O3to produce Cl2and Mn Cl2at 500°C.(2)Produced Mn Cl2is oxidized by water steam to produce Mn O at 450°C.(3)The Mn O compound is oxidized by air to yield Mn2O3.The X-ray diffraction(XRD)crystallite characterization results indicate the high conversion in each step under the optimum experimental conditions.Long term experiments for continuous conversion of HCl to Cl2by using Mn2O3as intermediate in a fixed bed reactor indicate that over 90%of HCl could be converted to Cl2on stream of 30 h.The production of Cl2from HCl with Mn compound as an intermediate and atmospheric steam is a feasible and recyclable process.展开更多
Sustainable and renewable natural resources as biomass that contains carbon and hydrogen elements can be a potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (...Sustainable and renewable natural resources as biomass that contains carbon and hydrogen elements can be a potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, traditional markets as well as skimmed coconut oil and straws from rice cultivation. Four kinds of energy-conversion technologies have been empirically tested in Indonesia. First, gasification of rubber wood from unproductive rubber trees to generate heat energy for the drying of fermented chocolate seeds. Secondly, energy conversion from organic vegetable waste by implementing thermophylic fermentation methods that produce biogas as a fuel and for generating electricity and also concurrently generate organic by-products called hygen compost. Thirdly, gasification of charcoal and wood sawdust for electricity generation. Finally, environment-friendly energy conversion by carbonizing small-diameter logs, sawdust, wood slabs and coconut shells into charcoal. This yielded charcoal integrated with wood vinegar production through condensation of smoke/vapors emitted during carbonization, thereby mitigating the impact of air pollution. Among the four experimental technologies that of integrated charcoal and wood vinegar production had been spectacularly developed and favored by rural communities. This technology brought added value to the process and product due to the wood vinegar, useful as bio-pesticide, plant-growth hormone and organic fertilizer. Such integrated and environment-friendly production, therefore, should be sustained, because Indonesia occupies a significant and worldwide position as charcoal-producing and marketing country. The technology of integrated wood vinegar-charcoal production hence deserves its dissemination throughout Indonesia, particularly to the charcoal industry that still produces charcoal without condensing the generated vapor/smoke, hence polluting the air.展开更多
The single spores were isolated from chlamydospores of Ustilaginoidea virens with three different maturities by PSA. The isolated single spores were cul- tured on different media at different temperatures under natura...The single spores were isolated from chlamydospores of Ustilaginoidea virens with three different maturities by PSA. The isolated single spores were cul- tured on different media at different temperatures under natural light for inducing conidia to explore the optimum isolation technique of single spore and optimum cul- ture condition of conidia. The results showed that the successful isolating rate of single spore from yellow rice false smut balls reached 90.00%. The sporulatina quantities of isolated single spores cultured on PSD and PDB media at 22 -29 ~C (variable temperature under natural light) or 28 ℃ (constant temperature under dark condition) for 12 d were up to 6.3× 107 and 1.1× 106 spore/mL, respectively. PSA was the most effective method to isolate single spores from yellow rice false smut balls of U. virens. The optimum conidia culture condition included PSD or PDB medium, 22 -29℃ or 28℃, natural light and vibration culture. Key words Ustilaginoidea virens; Single spore isolation; Conidia; Culture condition展开更多
文摘To stay globally competitive, manufacturing companies are increasingly under pressure to bring new products and applications to market, improve existing products, and discover new technologies to produce them at a lower price. New technological findings can enable companies to overcome these challenges. In practice, technology development associated with a long time horizon is often given a lower priority compared with short-term focused product development thus being stronger restricted by everyday business. More and more companies separate their technology development department from product development to promote technological innovations. Due to this additional interface in the R&D organization new problems arise, resulting in technologies not being implemented in products. The reasons for these problems amongst others concern wrong timing for the transfer or inadequate definition of responsibilities. In this paper of ongoing research, authors introduce a framework to design the transfer processes between technology development and product development. Although there are a number of options for designing the operative transfer, there is no regulatory framework specifying which configuration options are at this particular interface. The approach is to develop a model, which is able to design different company-specific transfer processes taking into account the object being transferred at this interface. Thus, for different objects to be transferred, different transfer processes are designed. The model's aim is to enable responsibility of the R&D management to design their company-specific transfer processes to enable more technologies being implemented into products, thus giving the whole company the possibility to act more innovatively.
文摘In vitro meat production system is the production of meat outside the food animals by culturing the stem cells derived from farm animals inside the bioreactor by using advanced tissue engineering techniques. Besides winning the favour of animal rights activists for its humane production of meat, in vitro meat production system also circumvents many of the issues associated with conventional meat production systems, like excessively brutal slaughter of food animals, nutrition-related diseases, foodborne illnesses, resource use, antibiotic-resistant pathogen strains, and massive emissions of methane that contribute to global warming. As the conditions in an in vitro meat production system are controlled and manipulatable, it will be feasible to produce designer, chemically safe and disease-free meat on sustainable basis. However, many challenges are to be faced before cultured meat becomes commercially feasible. Although, the production cost and the public acceptance are of paramount importance, huge funds are desperately required for further research in the field.
基金funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)the Science and Technology Innovation Project Fund of Chinese Academy of Agricultural Sciences (2015)
文摘Grassland is the important component of the terrestrial ecosystems. Estimating net primary productivity (NPP) of grassland ecosystem has been a central focus in global climate change researches. To simulate the grassland NPP in southern China, we built a new climate productivity model, and validated the model with the measured data from different years in the past. The results showed that there was a logarithmic correlation between the grassland NPP and the mean annual temperature, and there was a linear positive correlation between the grassland NPP and the annual precipitation in southern China. Al these results reached a very signiifcant level (P〈0.01). There was a good correlation between the simulated and the measured NPP, withR2 of 0.8027, reaching the very signiifcant level. Meanwhile, both root mean square errors (RMSE) and relative root-mean-square errors (RRMSE) stayed at a relatively low level, showing that the simulation results of the model were reliable. The NPP values in the study area had a decreasing trend from east to west and from south to north, and the mean NPP was 471.62 g C m?2 from 2000 to 2011. Additionaly, there was a rising trend year by year for the mean annual NPP of southern grassland and the tilt rate of the mean annual NPP was 3.49 g C m?2 yr?1 in recent 12 years. The above results provided a new method for grassland NPP estimation in southern China.
基金The authors acknowledge financial support for this research from the National Key Research and Development Program of China(2017YFB0403300 and 2017YFB043305)the National Natural Science Foundation of China(51425405 and 51874269),the National Science-Technology Support Plan Projects(2015BAB02B05)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2014037).Zhi Sun acknowledges financial support from the National Youth Thousand Talents Program.The authors acknowledge constructive suggestions from Prof.Jianxin Yang.
文摘In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.
基金the National Key Research and Development Program of China (2016YFD0300206-4)the National Natural Science Foundation of China (31461143015, 31471438)+3 种基金the National Key Technology R&D Program of China (2014AA10A605)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-201501)the Top Talent Supporting Program of Yangzhou University (2015-01)the Hong Kong Research Grant Council (14122415,14160516,14177617,AoE/M-05/12,AoE/M-403/16)
文摘Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.
基金supported by the National Key Research and Development Program (Grant No. 2017YFD0100403)the Jiangsu Province Key Research and Development Program (Modern Agriculture) Project (Grant No. BE2017345-2)+1 种基金the Exploratory Project of the Jiangsu Academy of Agricultural Sciences [Grant No. ZX(17)2014]the Jiangsu Province Natural Science Foundation (Grant No. BK20171326)
文摘The waxy gene(Wx) in rice, which encodes the granule bound starch synthase enzyme, is responsible for amylose synthesis. Glutinous(sticky) rice has little or no amylose that can be used in various applications, such as brewing. In this study, knockout of the Wx gene with CRISPR/Cas9 technology was conducted in two elite japonica rice lines, Huaidao 5(HD5) and Suken 118(SK118), aiming to develop elite sticky rice varieties. We achieved six homozygous T_0 plants with more than 200 bp deletion in the Wx gene, as well as 36 wx-HD5 and 18 wx-SK118 homozygous transgene-free plants in the T_1 generation. The seeds of all the mutants were white and opaque, similar to those of sticky rice, and contained only 2.6%–3.2% amylose. Results of scanning electron microscopy showed that the quality of rice did not change. In conclusion, we successfully developed two elite sticky rice varieties.
基金supported by the National Natural Science Foundation of China(31801028,32061143030,and 41801013)the National Key Technology Research and Development Program of China(2016YFD0100303)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Innovative Research Team of Ministry of Agriculturethe Qing-Lan Project of Yangzhou University。
文摘Rice(Oryza sativa)provides a staple food source for more than half the world population.However,the current pace of rice breeding in yield growth is insufficient to meet the food demand of the everincreasing global population.Genomic selection(GS)holds a great potential to accelerate breeding progress and is cost-effective via early selection before phenotypes are measured.Previous simulation and experimental studies have demonstrated the usefulness of GS in rice breeding.However,several affecting factors and limitations require careful consideration when performing GS.In this review,we summarize the major genetics and statistical factors affecting predictive performance as well as current progress in the application of GS to rice breeding.We also highlight effective strategies to increase the predictive ability of various models,including GS models incorporating functional markers,genotype by environment interactions,multiple traits,selection index,and multiple omic data.Finally,we envision that integrating GS with other advanced breeding technologies such as unmanned aerial vehicles and open-source breeding platforms will further improve the efficiency and reduce the cost of breeding.
基金financially supported by the Natural Science Foundation of China (Nos.U1610101 and 21776288)the Green Process Manufacturing Innovation Research Institute, Chinese Academy of Sciences (No.IAGM-2019-A09)the funding support from Vinnova (Dn: 2018-05293)。
文摘A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry.The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically.The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time.The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process.Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology.
基金supported by the Guangdong Natural Science Foundation(2017A030312005)Science and Technology Program of Guangzhou City(201707010058)。
文摘The reduction of CO2 emission is crucial for the mitigation of climate change.A considerable amount of industrial CO2 can be absorbed in the form of carbonates through high-temperature sorption processes.In this regard,the efficient conversion of carbonates to value-added products will provide an economically viable method for the sustainable usage of carbon compounds.Herein,we report a promising solution involving the use of a glycerol and ethanol mixture as a hydrogen donor in the dry reforming process with CaCO3 to produce syngas.A series of metal active components,including Ni,Fe,Co,Cu,Pt,Pd,Ru,and Rh,was used to promote this reaction.Ni showed comparable performance with that of Pd,but outperformed Co,Fe,Cu,Rh,Ru,and Pt.Approximately 100%conversion of glycerol and ethanol,~92%selectivity of synthesis gas(H2 and CO),and a H2/CO ratio of^1.2 were achieved over CaCO3 containing10 wt%Ni(10Ni-CaCO3).Meanwhile,the CO2 concentration was less than 5 vol%,indicating that most of the CO2 captured by the carbonate can be transformed into chemicals;however,they cannot simply be emitted.The CO2 released from the decomposition of CaCO3 not only adjusted the ratio of H2 to CO but also eliminated cokes to guarantee the CO2 absorption-conversion cyclic stability in the absence of steam and at high temperatures.
基金Supported by East Kalimantan,Indonesia,the National Research Council of Thailand the Japan Society for the Promotion of Science and the Integrated Innovation Academic Center:HAC Chulalongkorn University Centenary Academic Development Project(Grant No.RES560530041)
文摘Objective:To screen crude extracts of propolis,bee pollen and honey from four stingless bee species[Trigona incisa(T.incisa)],Timia apicalis,Trigona fuso-baltata and Trigona filscibasis)native to East Kalimantan.Indonesia for cytotoxic activity against five human cancer cell lines(HepG2,SW620,ChaGo-1,KATO-Ⅲand BT474).Methods:All samples were extracted with methanol,and then subpartitioned with n-hexane and ethyl acetate.Each crude extract was screened at 20μg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Tn addition,four previously shown bioactive components from propolis(apigenin,cafieic acid phenyl ester,kaempferol and naringenin)and two chemotherapeutic drugs(doxorubicin and 5-fluorouracil)were used to evaluate the sensitivity of the cell lines.Results:Overall,crude extracts from propolis and honey had higher cytotoxic activities than bee pollen,but the activity was dependent upon the extraction solvent,bee species and cell line.Propolis extracts from T.incisa and Tarda apicalis showed the highest and lowest cytotoxic activity,respectively.Only the HepG2 cell line was broadly sensitive to the honey extracts.For pure compounds,doxorubicin was the most cytotoxic,the four propolis compounds the least,but the ChaGo-I cell line was sensitive to kaempferol at 10μg/mL and KATO-Ⅲwas sensitive to kaempferol and apigenin at 10μg/mL,.All pure compounds were effective against the BT474 cell line.Conclusions:Propolis from f,incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines.Further study is required,including the isolation and characterization of the active antiproliferative agent(s).
文摘Ni-based superalloy K465 is brazed with BNi-2 filler metal by vacuum electron beam brazing (VEBB). In process of VEBB, effects of processing primary parameters on shear strength of joints are investigated. Microstructure of the brazed joint with BNi-2 filler metal is studied by means of scanning electron microscopy ( SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the structure of brazed seam consists of a large amount of Ni- based γ solid solution, Ni3Al ( γ') , Ni3B, WB, CrB, and a small quantity of WC, NbC, The maximum shear strength of the joint is 398 MPa when the beam current of welding is 2.6 mA, heating time is 480 s and focused current is 1 800 mA.
基金the National Natural Science Foundation of China(31701392 and 32170344)the Six Talent Peaks Project in Jiangsu Province(NY-142)+1 种基金the Jiangsu Province Government(JBGS[2021]001)the Independent Scientific Research Project Funds of the Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding(PLR202101).
文摘Nuclear factor Y(NF-Y),a group of conserved transcription-factor complexes that consist of NF-YA,B,and C subunits,is essential for developmental regulation and for responses to environmental changes in eukaryotes.We previously found that some NF-Y genes,such as OsNF-YA8,were expressed specifically in the endosperm of rice.In the present study,overexpression of OsNF-YA8 in rice resulted in reduced plant height due to suppressed cell elongation in internodes.Gibberellin(GA)biosynthetic genes,including OsCPS1,OsGA20ox1,and OsGA20ox2,were down-regulated.OsNF-YA8 bound to the promoters of these genes to repress their expression.Endogenous GA content was decreased in OsNF-YA8 overexpressors,whose dwarf phenotype could be partially rescued by exogenous GA treatment.The findings suggested that ectopic expression of OsNF-YA8 causes defective GA biosynthesis in vegetative stage.Heading date in OsNF-YA8 overexpressors was delayed,especially under short-day conditions.OsNFYA8 bound to the promoter of Heading Date 3a(Hd3a),the florigen gene in rice,to negatively regulate flowering.Either ectopic activation or knockout of OsNF-YA8 impaired seed development,as indicated by reduced seed size and increased grain chalkiness.These results suggest that ectopic expression of the endosperm-specific OsNF-YA8 in rice disrupts both vegetative and reproductive development.
文摘Study was conducted to assess the possible transfer of heavy metals from livestock feeds to animal products. In experiment-l, samples (n = 503) collected from conventional farms in Central Greece were analysed for heavy metal Copper (Cu), Zinc (Zn), Cadmium (Cd), Lead (Pb), Nickel (Ni) and Chromium (Cr) contents in muscle tissues, livers, kidneys, excremental and basic mixtures in livestock such as cows and sheep. Results showed that transfer of heavy metal contaminants from feed to animal products fluctuated below the permissible risk levels. In experiment 2, samples (n = 440) of feedstuffs used in different feeding regimens and seasons at different livestock farms [sheep (n = 140), dairy cows (n = 180), pigs (n = 120)] were collected. Results showed that relatively high concentration of Cu in the excrements of pigs (155 + 9.13) and Zn in the excrements of sheep (144.56 + 5.78) are explained by the use of Cu in the diet of developing piglets and sheep. Ovine showed higher concentration ofNi, Cr, and Pb in their excrements, while, the concentration of heavy metals in forages was under the allowed range to the EU legislation.
文摘This paper deals with the production-dependent failure rates for a hybrid manufacturing/remanufacturing system subject to random failures and repairs. The failure rate of the manufacturing machine depends on its production rate, while the failure rate of the remanufacturing machine is constant. In the proposed model, the manufacturing machine is characterized by a higher production rate. The machines produce one type of final product and unmet demand is backlogged. At the expected end of their usage, products are collected from the market and kept in recoverable inventory for future remanufacturing, or disposed of. The objective of the system is to find the production rates of the manufacturing and the remanufacturing machines that would minimize a discounted overall cost consisting of serviceable inventory cost, backlog cost and holding cost for returns. A computational algorithm, based on numerical methods, is used for solving the optimality conditions obtained from the application of the stochastic dynamic programming approach. Finally, a numerical example and sensitivity analyses are presented to illustrate the usefulness of the proposed approach. Our results clearly show that the optimal control policy of the system is obtained when the failure rates of the machine depend on its production rate.
文摘This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells.Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs.In a significant departure from these models,our approach incorporates an initiation pressure gradient and a discrete fracture seepage network,providing a more realistic representation of the seepage process.The model also integrates an enhanced fluid-solid interaction,which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir.This is achieved through the incorporation of improved permeability and stress coupling,leading to more precise predictions of reservoir behavior.The numerical solutions derived from the model are obtained through the sophisticated finite element method,ensuring high accuracy and computational efficiency.To ensure the model’s reliability and accuracy,the outcomes were tested against a real-world case,with results demonstrating strong alignment.A key revelation from the study is the significant difference between uncoupled and fully coupled volumetrically fractured horizontal wells,challenging conventional wisdom in the field.Additionally,the study delves into the effects of stress,fracture length,and fracture number on reservoir production,contributing valuable insights for the design and optimization of tight reservoirs.The findings from this study have the potential to revolutionize the field of tight reservoir prediction and management,offering significant advancements in petroleum engineering.The proposed approach brings forth a more nuanced understanding of tight reservoir systems and opens up new avenues for optimizing reservoir management and production.
基金support from the staff of the National Engineering Research Center for Functional Food,Jiangnan Universitysupported by the Postdoctoral Research Funding of Jiangsu Province (2021K269B)National Key Research & Developmental Program of China (2018YFA0900300)。
文摘In this study, yak bone collagen hydrolysate(YBCH)was produced by mixed proteases and provided to standard-diet mice at a different dose(low dose(LD), medium dose(MD), and high dose(HD))to investigate its effects on the composition of gut microbiota and short-chain fatty acids(SCFA)production. It was found that YBCH was mainly composed of small molecular peptides whose molecular weight below 2 000 Da. Notably, supplementation with different doses of YBCH could significantly downregulate the ratio of Firmicutes to Bacteroidetes in the fecal microbiota. At the family level, the Lachnospiraceae abundance was significantly reduced in the YBCH gavage groups(mean reduction ratio 41.7 %, 35.2%, and 36.4% for LD, MD, and HD group, respectively). The predicted functions of gut microbes in the MD group were significantly increased at “lipid metabolism” and “glycan biosynthesis and metabolism”. Moreover, the SCFA production in the YBCH groups was elevated. Especially, the concentration of acetic acid, propionic acid, and butyric acid in the MD group was separately increased 79.7%, 89.2%, and 78.8% than that in the NC group. These results indicated that YBCH might be applied in the development of functional food for intestinal microecological regulation.
基金Supported by the National High Technology Research and Development Program of China(2011AA060703)the Innovation Funds of institute of processes engineering of Chinese Academy of Sciences(062702)
文摘A new process is developed by using compound Mn as intermediate to produce Cl2from HCl,with the following steps.(1)HCl steam is decomposed by intermediate Mn2O3to produce Cl2and Mn Cl2at 500°C.(2)Produced Mn Cl2is oxidized by water steam to produce Mn O at 450°C.(3)The Mn O compound is oxidized by air to yield Mn2O3.The X-ray diffraction(XRD)crystallite characterization results indicate the high conversion in each step under the optimum experimental conditions.Long term experiments for continuous conversion of HCl to Cl2by using Mn2O3as intermediate in a fixed bed reactor indicate that over 90%of HCl could be converted to Cl2on stream of 30 h.The production of Cl2from HCl with Mn compound as an intermediate and atmospheric steam is a feasible and recyclable process.
文摘Sustainable and renewable natural resources as biomass that contains carbon and hydrogen elements can be a potential raw materials for energy conversion. In Indonesia, they comprise variable-sized wood from forests (i.e. natural forests, plantations and community forests that commonly produce small-diameter logs used as firewood by local people), woody residues from logging and wood industries, oil-palm shell waste from crude palm oil factories, coconut shell wastes from coconut plantations, traditional markets as well as skimmed coconut oil and straws from rice cultivation. Four kinds of energy-conversion technologies have been empirically tested in Indonesia. First, gasification of rubber wood from unproductive rubber trees to generate heat energy for the drying of fermented chocolate seeds. Secondly, energy conversion from organic vegetable waste by implementing thermophylic fermentation methods that produce biogas as a fuel and for generating electricity and also concurrently generate organic by-products called hygen compost. Thirdly, gasification of charcoal and wood sawdust for electricity generation. Finally, environment-friendly energy conversion by carbonizing small-diameter logs, sawdust, wood slabs and coconut shells into charcoal. This yielded charcoal integrated with wood vinegar production through condensation of smoke/vapors emitted during carbonization, thereby mitigating the impact of air pollution. Among the four experimental technologies that of integrated charcoal and wood vinegar production had been spectacularly developed and favored by rural communities. This technology brought added value to the process and product due to the wood vinegar, useful as bio-pesticide, plant-growth hormone and organic fertilizer. Such integrated and environment-friendly production, therefore, should be sustained, because Indonesia occupies a significant and worldwide position as charcoal-producing and marketing country. The technology of integrated wood vinegar-charcoal production hence deserves its dissemination throughout Indonesia, particularly to the charcoal industry that still produces charcoal without condensing the generated vapor/smoke, hence polluting the air.
基金Science and Technology Project of Guizhou Province[QKH Major Project( 2012 ) 6012 ]Supported by Science and Technology Fund of Guizhou Province ( QKH J[2009]2103)+1 种基金Science and Technology Research Programof Guizhou Province ( QKH NY[2012]3031)Project of Guizhou Academy of Agricultural Sciences ( [2010]033 and QNKH[Major]07016)
文摘The single spores were isolated from chlamydospores of Ustilaginoidea virens with three different maturities by PSA. The isolated single spores were cul- tured on different media at different temperatures under natural light for inducing conidia to explore the optimum isolation technique of single spore and optimum cul- ture condition of conidia. The results showed that the successful isolating rate of single spore from yellow rice false smut balls reached 90.00%. The sporulatina quantities of isolated single spores cultured on PSD and PDB media at 22 -29 ~C (variable temperature under natural light) or 28 ℃ (constant temperature under dark condition) for 12 d were up to 6.3× 107 and 1.1× 106 spore/mL, respectively. PSA was the most effective method to isolate single spores from yellow rice false smut balls of U. virens. The optimum conidia culture condition included PSD or PDB medium, 22 -29℃ or 28℃, natural light and vibration culture. Key words Ustilaginoidea virens; Single spore isolation; Conidia; Culture condition