Tuberculosis represents a main concern for public health worldwide. In poor countries, the most prevalent method for bacteriological confirmation re- mains Smear Sputum Microscopy (SSM). This study objective was to as...Tuberculosis represents a main concern for public health worldwide. In poor countries, the most prevalent method for bacteriological confirmation re- mains Smear Sputum Microscopy (SSM). This study objective was to assess clinical performances of Loop Mediated Isothermal Amplification for TB detection (Lamp-TB). Sputum of patients presenting symptoms consistent with tuberculosis were collected according to the National Tuberculosis Control Programme guidelines in Centre Antituberculeux de Yopougon. SSM after Ziehl-Neelsen staining and TB-Lamp were blindly performed with spot sputum specimen. Samples, transported at Institut Pasteur de Cote d’Ivoire were decontaminated according to N-acetyl-L-cystein (NALC) method. In Mycobacteria Growth Indicator Tube (MGIT), 500 μl of pellet were inoculated and incubated in MGIT 960 instrument. MPT64 antigen was detected on positive culture. Of 500 patients enrolled, 469 were included. Clinical isolates of M. tuberculosis Complex were detected for 157 (33.5%). Comparatively to culture, Sensitivity and Specificity of SSM were 86% (95% Confidence interval (CI): 81% - 91%) 96% (95%IC: 94% - 98%) respectively. TB-Lamp Sensitivity was 92% (95%CI: 88% - 96%), and Specificity 94% (95%CI: 91% - 97%). Positive Predictive Value of SSM and TB-Lamp was 91.8% and 88.8% respectively. Negative Predictive Value of TB-Lamp assay was 95.7% whereas this of SSM was 93.3%. Positive Likelihood Ratio was 15.3 for TB-Lamp and 21.5 for SSM 21.5 whereas negative Likelihood of TB-Lamp was lower than SSM. Active tuberculosis was detected in162/469 (34.5%) with TB-Lamp and 147 (31.3%) with SSM. TB-Lamp assay performances estimated from sputum samples may improve detection of active TB cases in routine.展开更多
文摘Tuberculosis represents a main concern for public health worldwide. In poor countries, the most prevalent method for bacteriological confirmation re- mains Smear Sputum Microscopy (SSM). This study objective was to assess clinical performances of Loop Mediated Isothermal Amplification for TB detection (Lamp-TB). Sputum of patients presenting symptoms consistent with tuberculosis were collected according to the National Tuberculosis Control Programme guidelines in Centre Antituberculeux de Yopougon. SSM after Ziehl-Neelsen staining and TB-Lamp were blindly performed with spot sputum specimen. Samples, transported at Institut Pasteur de Cote d’Ivoire were decontaminated according to N-acetyl-L-cystein (NALC) method. In Mycobacteria Growth Indicator Tube (MGIT), 500 μl of pellet were inoculated and incubated in MGIT 960 instrument. MPT64 antigen was detected on positive culture. Of 500 patients enrolled, 469 were included. Clinical isolates of M. tuberculosis Complex were detected for 157 (33.5%). Comparatively to culture, Sensitivity and Specificity of SSM were 86% (95% Confidence interval (CI): 81% - 91%) 96% (95%IC: 94% - 98%) respectively. TB-Lamp Sensitivity was 92% (95%CI: 88% - 96%), and Specificity 94% (95%CI: 91% - 97%). Positive Predictive Value of SSM and TB-Lamp was 91.8% and 88.8% respectively. Negative Predictive Value of TB-Lamp assay was 95.7% whereas this of SSM was 93.3%. Positive Likelihood Ratio was 15.3 for TB-Lamp and 21.5 for SSM 21.5 whereas negative Likelihood of TB-Lamp was lower than SSM. Active tuberculosis was detected in162/469 (34.5%) with TB-Lamp and 147 (31.3%) with SSM. TB-Lamp assay performances estimated from sputum samples may improve detection of active TB cases in routine.