Acute pancreatitis(AP)is a potentially fatal condition with no targeted treatment options.Although inhibiting xanthine oxidase(XO)in the treatment of AP has been studied in several experimental models and clinical tri...Acute pancreatitis(AP)is a potentially fatal condition with no targeted treatment options.Although inhibiting xanthine oxidase(XO)in the treatment of AP has been studied in several experimental models and clinical trials,whether XO is a target of AP and what its the main mechanism of action is remains unclear.Here,we aimed to re-evaluate whether XO is a target aggravating AP other than merely generating reactive oxygen species that trigger AP.We first revealed that XO expression and enzyme activity were significantly elevated in the serum and pancreas of necrotizing AP models.We also found that allopurinol and febuxostat,as purine-like and non-purine XO inhibitors,respectively,exhibited protective effects against pancreatic acinar cell death in vitro and pancreatic damage in vivo at different doses and treatment time points.Moreover,we observed that conditional Xdh overexpression aggravated pancreatic necrosis and severity.Further mechanism analysis showed that XO inhibition restored the hypoxia-inducible factor 1-alpha(HIF-1α)-regulated lactate dehydrogenase A(LDHA)and NOD-like receptor family pyrin domain containing 3(NLRP3)signaling pathways and reduced the enrichment of^(13)C_(6)-glucose to^(13)C_(3)-lactate.Lastly,we observed that clinical circulatory XO activity was significantly elevated in severe cases and correlated with C-reactive protein levels,while pancreatic XO and urate were also increased in severe AP patients.These results together indicated that proper inhibition of XO might be a promising therapeutic strategy for alleviating pancreatic necrosis and preventing progression of severe AP by downregulating HIF-1α-mediated LDHA and NLRP3 signaling pathways.展开更多
基金supported by the National Natural Science Foundation of China(Dan Du,82170905)the Program of Science and Technology Department of Sichuan Province(Dan Du,2023NSFSC1755,China)+2 种基金the State Key Laboratory of Bioactive Substance and Function of Natural Medicines,Institute of Materia Medica,Chinese Academy of Medical Sciences and Peking Union Medical College(Dan Du,GTZK202107,China)the 1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Qing Xia,ZYJC18005,China)the West China,Nursing Discipline Development Special Fund Project,Sichuan University(Xia Li,HXHL21060,China).
文摘Acute pancreatitis(AP)is a potentially fatal condition with no targeted treatment options.Although inhibiting xanthine oxidase(XO)in the treatment of AP has been studied in several experimental models and clinical trials,whether XO is a target of AP and what its the main mechanism of action is remains unclear.Here,we aimed to re-evaluate whether XO is a target aggravating AP other than merely generating reactive oxygen species that trigger AP.We first revealed that XO expression and enzyme activity were significantly elevated in the serum and pancreas of necrotizing AP models.We also found that allopurinol and febuxostat,as purine-like and non-purine XO inhibitors,respectively,exhibited protective effects against pancreatic acinar cell death in vitro and pancreatic damage in vivo at different doses and treatment time points.Moreover,we observed that conditional Xdh overexpression aggravated pancreatic necrosis and severity.Further mechanism analysis showed that XO inhibition restored the hypoxia-inducible factor 1-alpha(HIF-1α)-regulated lactate dehydrogenase A(LDHA)and NOD-like receptor family pyrin domain containing 3(NLRP3)signaling pathways and reduced the enrichment of^(13)C_(6)-glucose to^(13)C_(3)-lactate.Lastly,we observed that clinical circulatory XO activity was significantly elevated in severe cases and correlated with C-reactive protein levels,while pancreatic XO and urate were also increased in severe AP patients.These results together indicated that proper inhibition of XO might be a promising therapeutic strategy for alleviating pancreatic necrosis and preventing progression of severe AP by downregulating HIF-1α-mediated LDHA and NLRP3 signaling pathways.