期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Conversion of Lignin into Porous Carbons for High-Performance Supercapacitors via Spray Drying and KOH Activation: Structure-Properties Relationship and Reaction Mechanism
1
作者 Shihao Feng Qin Ouyang +4 位作者 Jing Huang Xilin Zhang Zhongjun Ma Kun Liang Qing Huang 《Journal of Renewable Materials》 EI CAS 2024年第7期1207-1218,共12页
Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance d... Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors. 展开更多
关键词 LIGNIN porous carbon KOH activation mechanism SUPERCAPACITOR
下载PDF
Molten Salt-Shielded Synthesis(MS^(3))of MXenes in Air 被引量:2
2
作者 Jinjin Chen Qianqian Jin +7 位作者 Youbing Li Hui Shao Pengcheng Liu Ying Liu Pierre-Louis Taberna Qing Huang Zifeng Lin Patrice Simon 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期159-164,共6页
MXenes are two-dimensional transition metal carbides and/or nitrides with unique physiochemical properties and have attracted extensive interest in numerous fields.However,current MXene synthesis methods are limited b... MXenes are two-dimensional transition metal carbides and/or nitrides with unique physiochemical properties and have attracted extensive interest in numerous fields.However,current MXene synthesis methods are limited by hazardous synthesis conditions,high production costs,or difficulty in largescale production.Therefore,a general,safe,cost-effective,and scalable synthesis method for MXenes is crucial.Here,we report the fast synthesis of MXenes in the open air using a molten salt-shielded synthesis(MS^(3))method,which uses Lewis-acid salts as etchants and a low-melting-point eutectic salt mixture as the reaction medium and shield to prevent MXene oxidation at high temperatures.Carbide and nitride MXenes,including Ti_(3)C_(2)T_(x),Ti_(2)CT_(x),Ti_(3)CNT_(x),and Ti_(4)N_(3)T_(x),were successfully synthesized using the MS^(3) method.We also present the flexibility of the MS^(3) method by scaling the etching process to large batches of 20 and 60 g of Ti_(3)AlC_(2) MAX precursor in one pot.When used as negative electrodes,the prepared MS^(3)-MXenes delivered excellent electrochemical properties for high-rate Li-ion storage. 展开更多
关键词 carbides lithium-ion storage molten salt synthesis MXene nitrides
下载PDF
Proton‑Prompted Ligand Exchange to Achieve High‑Efficiency CsPbI_(3) Quantum Dot Light‑Emitting Diodes 被引量:1
3
作者 Yanming Li Ming Deng +2 位作者 Xuanyu Zhang Lei Qian Chaoyu Xiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期53-62,共10页
CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improv... CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h. 展开更多
关键词 CsPbI_(3) perovskite quantum dots Light-emitting diodes Ligand exchange Proton-prompted in-situ exchange
下载PDF
Corrosion-Resistant Polymer-Derived SiOC Membrane for Effective Organic Removal via Synergistic Adsorption and Peroxymonosulfate Activation
4
作者 Jiankun Ji Yarong Gu +4 位作者 Jianning Zhang Chongwen Yu Xiao Hu Yueping Bao Yujie Song 《Transactions of Tianjin University》 EI CAS 2024年第3期238-249,共12页
A major challenge is to construct ceramic membranes with tunable structures and functions for water treatment.Herein,a novel corrosion-resistant polymer-derived silicon oxycarbide(SiOC)ceramic membrane with designed a... A major challenge is to construct ceramic membranes with tunable structures and functions for water treatment.Herein,a novel corrosion-resistant polymer-derived silicon oxycarbide(SiOC)ceramic membrane with designed architectures was fabricated by a phase separation method and was applied in organic removal via adsorption and oxidation for the first time.The pore structure of the as-prepared SiOC ceramic membranes was well controlled by changing the sintering temperature and polydimethylsiloxane content,leading to a pore size of 0.84–1.62μm and porosity of 25.0–43.8%.Corrosion resistance test results showed that the SiOC membranes sustained minimal damage during 24 h exposure to high-intensity acid–base conditions,which could be attributed to the chemical inertness of SiOC.With rhodamine 6G(R6G)as the model pollutant,the SiOC membrane demonstrated an initial eff ective removal rate of 99%via adsorption;however,the removal rate decreased as the system approached adsorption saturation.When peroxymonosulfate was added into the system,efficient and continuous degradation of R6G was observed throughout the entire period,indicating the potential of the as-prepared SiOC membrane in oxidation-related processes.Thus,this work provides new insights into the construction of novel polymer-derived ceramic membranes with well-defined structures and functions. 展开更多
关键词 Polymer-derived ceramics MEMBRANE Corrosion resistance ADSORPTION Oxidation
下载PDF
Electrochemical Lithium Storage Performance of Molten Salt Derived V_(2)SnC MAX Phase 被引量:3
5
作者 Youbing Li Guoliang Ma +18 位作者 Hui Shao Peng Xiao Jun Lu Jin Xu Jinrong Hou Ke Chen Xiao Zhang Mian Li Per OÅPersson Lars Hultman Per Eklund Shiyu Du Zhifang Chai Zhengren Huang Na Jin Jiwei Ma Ying Liu Zifeng Lin Qing Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期266-275,共10页
MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage.Here,we report the preparation of V_(2)SnC MAX phase by the molt... MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage.Here,we report the preparation of V_(2)SnC MAX phase by the molten salt method.V_(2)SnC is investigated as a lithium storage anode,showing a high gravimetric capacity of 490 mAh g−1 and volumetric capacity of 570 mAh cm^(−3) as well as superior rate performance of 95 mAh g^(−1)(110 mAh cm^(−3))at 50 C,surpassing the ever-reported performance of MAX phase anodes.Sup-ported by operando X-ray diffraction and density functional theory,a charge storage mechanism with dual redox reaction is proposed with a Sn-Li(de)alloying reaction that occurs at the edge sites of V_(2)SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V_(2)C layers with Li.This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials. 展开更多
关键词 MAX phase Molten salt Lithium storage High-rate Energy storage
下载PDF
Materials and device engineering to achieve high-performance quantum dots light emitting diodes for display applications 被引量:1
6
作者 韩长峰 钱若曦 +1 位作者 向超宇 钱磊 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期1-13,共13页
Quantum dots(QDs)have attracted wide attention from academia and industry because of their advantages such as high emitting efficiency,narrow half-peak width,and continuously adjustable emitting wavelength.QDs light e... Quantum dots(QDs)have attracted wide attention from academia and industry because of their advantages such as high emitting efficiency,narrow half-peak width,and continuously adjustable emitting wavelength.QDs light emitting diodes(QLEDs)are expected to become the next generation commercial display technology.This paper reviews the progress of QLED from physical mechanism,materials,to device engineering.The strategies to improve QLED performance from the perspectives of quantum dot materials and device structures are summarized. 展开更多
关键词 quantum dots light emitting diodes device engineering
下载PDF
Topotactic transition of Ti_(4)AlN_(3) MAX phase in Lewis acid molten salt
7
作者 Xinbo Liu Youbing Li +4 位作者 Haoming Ding Lu Chen Shiyu Du Zhifang Chai Qing Huang 《Journal of Materiomics》 SCIE CSCD 2023年第6期1032-1038,共7页
MAX phases and its derived two-dimensional MXenes have attracted considerable interest because of their rich structural chemistry and multifunctional applications.Lewis acid molten salt route provides an opportunity f... MAX phases and its derived two-dimensional MXenes have attracted considerable interest because of their rich structural chemistry and multifunctional applications.Lewis acid molten salt route provides an opportunity for structure design and performance manipulation of new MAX phases and MXenes,Although a series of new MAX phases and MXenes were successfully prepared via Lewis acid melt route in recent years,few work is explored on nitride MAX phases and MXenes.Herein,a new copper-based 413-type Ti_(4)CuN_(3)MAX phase was synthesized through isomorphous replacement reaction using Ti_(4)CuN_(3)MAX phase precursor in molten CuCl2.In addition,it was found that at high temperature Ti4N3Clx MXene will transform into two-dimensional cubic TiNa nanosheets with improved structural stability. 展开更多
关键词 MAX phases MXenes Two-dimensional titanium nitride Lewis acid route
原文传递
Multifunctional RGD coated a single-atom iron nanozyme:A highly selective approach to inducing ferroptosis and enhancing immunotherapy for pancreatic cancer
8
作者 Haoqi Pan Xu Chen +6 位作者 Mingming Xiao He Xu Jiansheng Guo Zhiyi Lu Dong Cen Xianjun Yu Si Shi 《Nano Research》 SCIE EI CSCD 2024年第6期5469-5478,共10页
Nanozyme is a new promising approach to cancer therapy for its ability to induce ferroptosis by activating H_(2)O_(2)via a traditional radical pathway and enhance cancer immunotherapy.However,short half-life period of... Nanozyme is a new promising approach to cancer therapy for its ability to induce ferroptosis by activating H_(2)O_(2)via a traditional radical pathway and enhance cancer immunotherapy.However,short half-life period of hydroxyl radical(·OH)results in unsatisfied effectiveness.Herein,we synthesized a single-atom iron nanozyme(Fe-SAzyme),which can activate H_(2)O_(2)via a non-radical pathway to generate Fe-based reactive oxygen species(ROS)(O=FeO_(3)=O)for promoting the ferroptosis of pancreatic cancer cells.This Fe-SAzyme could be specifically phagocytosed by pancreatic cancer cells,increasing ROS levels and inhibiting glutathione(GSH)synthesis,which activates ferroptosis.Tumor magnetic resonance imaging(MRI)showed decreased T2 signal after intravenous injection of RGD@Fe-AC(AC=activated carbon).Moreover,RGD@Fe-AC promoted dendritic cell(DC)maturation,overcame Treg-mediated immunosuppression,activated T cells to trigger adaptive immune responses,and enhanced the efficacy ofα-PD-L1 immunotherapy.Our research demonstrated that RGD@Fe-AC provided a straightforward,easily implemented,and selective approach for pancreatic cancer treatment and immunotherapy. 展开更多
关键词 single-atom iron nanozyme pancreatic cancer IMMUNOTHERAPY ferroptosis
原文传递
In-situ growth of MAX phase coatings on carbonised wood and their terahertz shielding properties 被引量:5
9
作者 Jiaxuan HUANG Hujie WAN +9 位作者 Mian LI Yiming ZHANG Jianfeng ZHU Xuelin LI Wenchao SHUI Yao LI Xiaomeng FAN Qiye WEN Xu XIAO Qing HUANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第6期1291-1298,共8页
Electromagnetic interference(EMI)shielding materials have received considerable attention in recent years.The EMI shielding effectiveness(SE)of materials depends on not only their composition but also their microstruc... Electromagnetic interference(EMI)shielding materials have received considerable attention in recent years.The EMI shielding effectiveness(SE)of materials depends on not only their composition but also their microstructures.Among various microstructure prototypes,porous structures provide the advantages of low density and high terahertz wave absorption.In this study,by using carbonised wood(CW)as a template,1-mm-thick MAX@CW composites(Ti2AlC@CW,V2A1C@CW,and Cr2AlC@CW)with a porous structure were fabricated through the molten salt method.The MAX@CW composites led to the formation of a conductive network and multilayer interface,which resulted in improved EMI SE.The average EMI SE values of the three MAX@CW composites were>45 dB in the frequency of 0.6-1.6 THz.Among the composites,V2A1C@CW exhibited the highest average EMI SE of 55 dB. 展开更多
关键词 MAX phases biomimics electromagnetic interference(EMI) terahertz shielding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部