Analyzes on solid potassium mineral reserves calculation methods and existing problems of chaerhan salt lake,t with many parameters comparison solid potassium mineral reserves calculation results are reliable,the
This paper briefly introduces resources characteristics and development advantages for Charhan salt lake;and elaborated the technology progress to increase potassium mining scale systematically,the impact of the
In order to analyze the effect of scratch on the corrosion behaviour of a calcium phosphate conversion coating(CPCC)on AZ80,the electrochemical testing,scanning vibrating electrode technique(SVET),immersion test and h...In order to analyze the effect of scratch on the corrosion behaviour of a calcium phosphate conversion coating(CPCC)on AZ80,the electrochemical testing,scanning vibrating electrode technique(SVET),immersion test and hydrogen evolution experiment were performed to study the corrosion resistance of AZ80,AZ80 with CPCC and coated AZ80 with scratch.The results show that the coating improves the corrosion resistance of the AZ80 from a current density of(85±4)to(4±1)μA/cm^(2).When the coating was damaged,its protection on substrate would be reduced.The scratch with a length of around 12 mm on the coating reduced the corrosion resistance to a current density of(39±1)μA/cm^(2).In addition,the corrosion occurred initially in the scratch area and the corrosion site first occurred at the junction of the scratch and the coating.Besides,the micro corrosion mechanism of the specimen containing scratch was clarified.展开更多
The escalating challenges in water treatment,exacerbated by climate change,have catalyzed the emergence of innovative solutions.Novel adsorption separation and membrane filtration methodologies,achieved through molecu...The escalating challenges in water treatment,exacerbated by climate change,have catalyzed the emergence of innovative solutions.Novel adsorption separation and membrane filtration methodologies,achieved through molecular structure manipulation,are gaining traction in the environmental and energy sectors.Separation technologies,integral to both the chemical industry and everyday life,encompass concentration and purification processes.Macrocycles,recognized as porous materials,have been prevalent in water treatment due to their inherent benefits:stability,adaptability,and facile modification.These structures typically exhibit high selectivity and reversibility for specific ions or molecules,enhancing their efficacy in water purification processes.The progression of purification methods utilizing macrocyclic frameworks holds promise for improved adsorption separations,membrane filtrations,resource utilization,and broader water treatment applications.This review encapsulates the latest breakthroughs in macrocyclic host-guest chemistry,with a focus on adsorptive and membrane separations.The aim is to spotlight strategies for optimizing macrocycle designs and their subsequent implementation in environmental and energy endeavors,including desalination,elemental extraction,seawater energy harnessing,and sustainable extraction.Hopefully,this review can guide the design and functionality of macrocycles,offering a significantly promising pathway for pollutant removal and resource utilization.展开更多
Reducing the dissolution of Mn from LiMn_(2)O_(4)(LMO)and enhancing the stability of film electrodes are critical and challenging for Li+ions selective extraction via electrochemically switched ion exchange technology...Reducing the dissolution of Mn from LiMn_(2)O_(4)(LMO)and enhancing the stability of film electrodes are critical and challenging for Li+ions selective extraction via electrochemically switched ion exchange technology.In this work,we prepared a nitrogen-doped carbon cladding LMO(C-N@LMO)by polymerization of polypyrrole and high-temperature annealing in the N2 gas to achieve the above purpose.The modified C-N@LMO film electrode exhibited lower Mn dissolution and better cyclic stability than the LMO film electrode.The dissolution ratio of Mn from the C-N@LMO film electrode decreased by 42%compared to the LMO film electrode after 10 cycles.The cladding layer not only acted as a protective layer but also functioned as a conductive shell,accelerating the migration rate of Li+ions.The intercalation equilibrium time of the C-N@LMO film electrode reached within an hour during the extraction of Li+ions,which was 33%less compared to the pure LMO film electrode.Meanwhile,the C-N@LMO film electrode retained evident selectivity toward Li+ions,and the separation factor was 118.38 for Li+toward Mg2+in simulated brine.Therefore,the C-N@LMO film electrode would be a promising candidate for the recovery of Li+ions from salt lakes.展开更多
文摘Analyzes on solid potassium mineral reserves calculation methods and existing problems of chaerhan salt lake,t with many parameters comparison solid potassium mineral reserves calculation results are reliable,the
文摘This paper briefly introduces resources characteristics and development advantages for Charhan salt lake;and elaborated the technology progress to increase potassium mining scale systematically,the impact of the
基金financially supported by the National Natural Science Foundation of China(Nos.52071036,51701027)the Fundamental Research Funds for the Central Universities,China(Nos.2020CDJQY-A002,2021CDJCGJ009)the National Key Research and Development Program of China(Nos.2016YFB0301100,2016YFB0101700)。
文摘In order to analyze the effect of scratch on the corrosion behaviour of a calcium phosphate conversion coating(CPCC)on AZ80,the electrochemical testing,scanning vibrating electrode technique(SVET),immersion test and hydrogen evolution experiment were performed to study the corrosion resistance of AZ80,AZ80 with CPCC and coated AZ80 with scratch.The results show that the coating improves the corrosion resistance of the AZ80 from a current density of(85±4)to(4±1)μA/cm^(2).When the coating was damaged,its protection on substrate would be reduced.The scratch with a length of around 12 mm on the coating reduced the corrosion resistance to a current density of(39±1)μA/cm^(2).In addition,the corrosion occurred initially in the scratch area and the corrosion site first occurred at the junction of the scratch and the coating.Besides,the micro corrosion mechanism of the specimen containing scratch was clarified.
文摘The escalating challenges in water treatment,exacerbated by climate change,have catalyzed the emergence of innovative solutions.Novel adsorption separation and membrane filtration methodologies,achieved through molecular structure manipulation,are gaining traction in the environmental and energy sectors.Separation technologies,integral to both the chemical industry and everyday life,encompass concentration and purification processes.Macrocycles,recognized as porous materials,have been prevalent in water treatment due to their inherent benefits:stability,adaptability,and facile modification.These structures typically exhibit high selectivity and reversibility for specific ions or molecules,enhancing their efficacy in water purification processes.The progression of purification methods utilizing macrocyclic frameworks holds promise for improved adsorption separations,membrane filtrations,resource utilization,and broader water treatment applications.This review encapsulates the latest breakthroughs in macrocyclic host-guest chemistry,with a focus on adsorptive and membrane separations.The aim is to spotlight strategies for optimizing macrocycle designs and their subsequent implementation in environmental and energy endeavors,including desalination,elemental extraction,seawater energy harnessing,and sustainable extraction.Hopefully,this review can guide the design and functionality of macrocycles,offering a significantly promising pathway for pollutant removal and resource utilization.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A20303,22078217 and U20A20141).
文摘Reducing the dissolution of Mn from LiMn_(2)O_(4)(LMO)and enhancing the stability of film electrodes are critical and challenging for Li+ions selective extraction via electrochemically switched ion exchange technology.In this work,we prepared a nitrogen-doped carbon cladding LMO(C-N@LMO)by polymerization of polypyrrole and high-temperature annealing in the N2 gas to achieve the above purpose.The modified C-N@LMO film electrode exhibited lower Mn dissolution and better cyclic stability than the LMO film electrode.The dissolution ratio of Mn from the C-N@LMO film electrode decreased by 42%compared to the LMO film electrode after 10 cycles.The cladding layer not only acted as a protective layer but also functioned as a conductive shell,accelerating the migration rate of Li+ions.The intercalation equilibrium time of the C-N@LMO film electrode reached within an hour during the extraction of Li+ions,which was 33%less compared to the pure LMO film electrode.Meanwhile,the C-N@LMO film electrode retained evident selectivity toward Li+ions,and the separation factor was 118.38 for Li+toward Mg2+in simulated brine.Therefore,the C-N@LMO film electrode would be a promising candidate for the recovery of Li+ions from salt lakes.