Microwave-assisted selective catalytic reduction of nitrogen oxides(NOx)was investigated over Nibased metal oxides.The NiMn2O4 and NiCo_(2)O_(4) catalysts were synthesized by the co-precipitation method and their acti...Microwave-assisted selective catalytic reduction of nitrogen oxides(NOx)was investigated over Nibased metal oxides.The NiMn2O4 and NiCo_(2)O_(4) catalysts were synthesized by the co-precipitation method and their activities were evaluated as potential candidate catalysts for low-temperature NH_(3)-SCR in a microwave field.The physicochemical properties and structures of the catalysts were characterized by X-ray diffraction(XRD),Scanning electron microscope(SEM),N_(2)-physisorption,NO adsorption-desorption in the microwave field,H2-temperature programmed reduction(H2-TPR)and NH3-temperature programmed desorption(NH_(3)-TPD).The results verified that microwave radiation reduced the reaction temperature required for NH_(3)-SCR compared to conventional heating,which needed less energy.For the NiMn_(2)O_(4) catalyst,the catalytic efficiency exceeded 90%at 70°C and reached 96.8%at 110°C in the microwave field.Meanwhile,the NiMn_(2)O_(4) also exhibited excellent low-temperature NH3-SCR reaction performance under conventional heating conditions,which is due to the high BET specific surface area,more suitable redox property,good NO adsorption-desorption in the microwave field and rich acidic sites.展开更多
基金supported by the National Natural Science Foundation of China(No.21806005).
文摘Microwave-assisted selective catalytic reduction of nitrogen oxides(NOx)was investigated over Nibased metal oxides.The NiMn2O4 and NiCo_(2)O_(4) catalysts were synthesized by the co-precipitation method and their activities were evaluated as potential candidate catalysts for low-temperature NH_(3)-SCR in a microwave field.The physicochemical properties and structures of the catalysts were characterized by X-ray diffraction(XRD),Scanning electron microscope(SEM),N_(2)-physisorption,NO adsorption-desorption in the microwave field,H2-temperature programmed reduction(H2-TPR)and NH3-temperature programmed desorption(NH_(3)-TPD).The results verified that microwave radiation reduced the reaction temperature required for NH_(3)-SCR compared to conventional heating,which needed less energy.For the NiMn_(2)O_(4) catalyst,the catalytic efficiency exceeded 90%at 70°C and reached 96.8%at 110°C in the microwave field.Meanwhile,the NiMn_(2)O_(4) also exhibited excellent low-temperature NH3-SCR reaction performance under conventional heating conditions,which is due to the high BET specific surface area,more suitable redox property,good NO adsorption-desorption in the microwave field and rich acidic sites.