Carbon neutralization has been introduced as a long-term policy to control global warming and climate change.As plant photosynthesis produces the most abundant lignocellulosic biomass on Earth,its conversion to biofue...Carbon neutralization has been introduced as a long-term policy to control global warming and climate change.As plant photosynthesis produces the most abundant lignocellulosic biomass on Earth,its conversion to biofuels and bioproducts is considered a promising solution for reducing the net carbon release.However,natural lignocellulose recalcitrance crucially results in a costly biomass process along with secondary waste liberation.By updating recent advances in plant biotechnology,biomass engineering,and carbon nanotechnology,this study proposes a novel strategy that integrates the genetic engineering of bioenergy crops with green-like biomass processing for cost-effective biofuel conversion and high-value bioproduction.By selecting key genes and appropriate genetic manipulation approaches for precise lignocellulose modification,this study highlights the desirable genetic site mutants and transgenic lines that are raised in amorphous regions and inner broken chains account for high-density/length-reduced cellulose nanofiber assembly in situ.Since the amorphous regions and inner-broken chains of lignocellulose substrates are defined as the initial breakpoints for enhancing biochemical,chemical,and thermochemical conversions,desirable cellulose nanofibers can be employed to achieve nearcomplete biomass enzymatic saccharification for maximizing biofuels or high-quality biomaterials,even under cost-effective and green-like biomass processes in vitro.This study emphasizes the optimal thermal conversion for generating high-performance nanocarbons by combining appropriate nanomaterials generated from diverse lignocellulose resources.Therefore,this study provides a perspective on the potential of green carbon productivity as a part of the fourth industrial revolution.展开更多
A series of copolymers of thiazoloisoindigo (Tzll) with different chalcogenophene trimers were synthesized to systematicllyinvestigate the chalcogen effect on their charge transport propertes.When only the middlethiop...A series of copolymers of thiazoloisoindigo (Tzll) with different chalcogenophene trimers were synthesized to systematicllyinvestigate the chalcogen effect on their charge transport propertes.When only the middlethiophene ring of terthiphene(T-T-T)is replaced byheavier chalcogenophenes,a preference(expressed by the ratio of μe/μh)towards electron transport was observed descending from T-T-Tto T-Se-Tthen to T-Te-T(Se and Te stand for selenophene and tellurophene,respectively).On the other hand,with the increased number of heavierchalcogenophenes,a preference toward hole transport was observed descending from Se-T-Se to Se-Se-se then to Se-Te-Se.This phenomenon iswellexplained by the balance between the aromatic resonance energy of the chalcogenophenes and the electronegativity of the chalcogens.Specifically,P(TZll-T-Se-T)displayed relatively balanced ambipolar property(μh^(max)andμe^(max) of 3.77 and 1.59 cm^(2)·v^(-1)·s^(-1)with aμe/μh of 0.42).while P(Tll-Se-Te-Se)exhibited the best preference to hole transfer with a u.u,of 0.09.P(Tzll-T-Te-T)exhibited the best preference to electrontransfer with aμe/μl,of 16 and theμe^(max)of 0.64 cm^(2)·v^(-).s^(-1)which is the highest electron mobility among the known conjugated polymerscontaining tellurophenes.展开更多
基金supported by the National Natural Science Foundation of China(32170268 to L.P)the National 111 Project of the Ministry of Education of China(BP0820035 to L.P,D17009 to J.T)+1 种基金the Initiative Grant of Hubei University of Technology for High-level Talents(GCC20230001 to L.P)the Shandong Energy Institute,China(SEI I202142 to C.F).
文摘Carbon neutralization has been introduced as a long-term policy to control global warming and climate change.As plant photosynthesis produces the most abundant lignocellulosic biomass on Earth,its conversion to biofuels and bioproducts is considered a promising solution for reducing the net carbon release.However,natural lignocellulose recalcitrance crucially results in a costly biomass process along with secondary waste liberation.By updating recent advances in plant biotechnology,biomass engineering,and carbon nanotechnology,this study proposes a novel strategy that integrates the genetic engineering of bioenergy crops with green-like biomass processing for cost-effective biofuel conversion and high-value bioproduction.By selecting key genes and appropriate genetic manipulation approaches for precise lignocellulose modification,this study highlights the desirable genetic site mutants and transgenic lines that are raised in amorphous regions and inner broken chains account for high-density/length-reduced cellulose nanofiber assembly in situ.Since the amorphous regions and inner-broken chains of lignocellulose substrates are defined as the initial breakpoints for enhancing biochemical,chemical,and thermochemical conversions,desirable cellulose nanofibers can be employed to achieve nearcomplete biomass enzymatic saccharification for maximizing biofuels or high-quality biomaterials,even under cost-effective and green-like biomass processes in vitro.This study emphasizes the optimal thermal conversion for generating high-performance nanocarbons by combining appropriate nanomaterials generated from diverse lignocellulose resources.Therefore,this study provides a perspective on the potential of green carbon productivity as a part of the fourth industrial revolution.
基金the National Natural Science Foundation of China(Nos.22075105 and 51573204)National Science Foundation of Shandong Province(No.ZR2018ZB0315)+1 种基金H.Zhang thanks the financial support from the National Natural Science Foundation of China(No.51803230)Prof.J.Wang thanks the financial support from the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education,Jianghan University.The authors thank Dr.Chunming Yang for GIWAXS tests and beamline BL16B1(Shanghai Synchrotron Radiation Facility)for providing beam time.
文摘A series of copolymers of thiazoloisoindigo (Tzll) with different chalcogenophene trimers were synthesized to systematicllyinvestigate the chalcogen effect on their charge transport propertes.When only the middlethiophene ring of terthiphene(T-T-T)is replaced byheavier chalcogenophenes,a preference(expressed by the ratio of μe/μh)towards electron transport was observed descending from T-T-Tto T-Se-Tthen to T-Te-T(Se and Te stand for selenophene and tellurophene,respectively).On the other hand,with the increased number of heavierchalcogenophenes,a preference toward hole transport was observed descending from Se-T-Se to Se-Se-se then to Se-Te-Se.This phenomenon iswellexplained by the balance between the aromatic resonance energy of the chalcogenophenes and the electronegativity of the chalcogens.Specifically,P(TZll-T-Se-T)displayed relatively balanced ambipolar property(μh^(max)andμe^(max) of 3.77 and 1.59 cm^(2)·v^(-1)·s^(-1)with aμe/μh of 0.42).while P(Tll-Se-Te-Se)exhibited the best preference to hole transfer with a u.u,of 0.09.P(Tzll-T-Te-T)exhibited the best preference to electrontransfer with aμe/μl,of 16 and theμe^(max)of 0.64 cm^(2)·v^(-).s^(-1)which is the highest electron mobility among the known conjugated polymerscontaining tellurophenes.