In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-si...In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.展开更多
As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of tradition...As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.展开更多
The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power ...The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power and pulse width influence on SNR is studied on the theoretical derivation and analysis,and the results show that the higher the peak power can realize the greater the signal-to-noise ratio of coherent Doppler wind lidar.But when the peak power is too large,the laser pulse may appear nonlinear phenomenon,which cause the damage of the laser.So,the peak power must be less than the stimulated brillouin scattering power threshold.Increasing the pulse width can make the laser device to output more energy,but it will also make the spatial resolution lower,and the influence of turbulence on SNR will be greater.After a series of simulation analyses,it can be concluded that when the peak power is 650W and the pulse width is 340ns,the SNR of the system can be maximized.In addition,the coherent Doppler wind lidar system is set up to carry out corresponding experimental verification.The experimental results are consistent with the theoretical analysis and simulation,which verifies the correctness of the theoretical analysis and simulation results.It provides theoretical basis and practical ex-perience for the design of laser transmitting pulse in coherent Doppler wind lidar system.展开更多
Shipborne observations obtained with the coherent Doppler lidar(CDL)and radiosonde during 2014 campaign were used to study the structure of marine boundary layer in the Yellow Sea.Vertical wind profiles corrected for ...Shipborne observations obtained with the coherent Doppler lidar(CDL)and radiosonde during 2014 campaign were used to study the structure of marine boundary layer in the Yellow Sea.Vertical wind profiles corrected for ship motion was used to derive higher-order statistics,showing that motion correction is required and significant for turbulence analysis.During a day with weak mesoscale activity,a complexed three-layer structure system was observed.The lowest layer showed a typical stable boundary layer structure feature.An aerosol layer with abrupt variation in wind speed and relative humidity always appeared at the middle layer,the formation of which may be due to Kelvin-Helmholz instability.The top layer encountered a dramatic change in wind direction,which may result from the warm advection from the Eurasian continent on the basis of backward trajectory analysis.Furthermore,the MABL height in stable regime was derived from potential temperature,CDL signal-to-noise ratio(SNR)and CDL vertical velocity variance,respectively.The stable boundary layer(SBL)height in SBL can be derived from the inversion layer of potential temperature profile,and the mixing height in SBL can be retrieved from the vertical velocity variance gradient method.Neither the SBL height nor the mixing height is in agreement with the height retrieved from CDL SNR gradient method because of different definition and criterion.One of the limitations of SNR gradient method for MABL retrieval is that it is easier to be affected by the lofted decoupled aerosol layer,where the retrieved result is less suitable.Finally,the higher-order vertical velocity statistics within the marine stable boundary layer were investigated and compared with the previous studies,and different turbulence mechanisms have an important effect on the statistics deviation.展开更多
基金supported by the Taishan Scholars Programs of Shandong Province(No.tsqn201909165)the Global Change and Air-Sea Interaction Program(Nos.GASI-04-QYQH-03,GASI-01-WIND-STwin)the National Natural Science Foundation of China(Nos.41876028,42349910).
文摘In contrast to the Pacific and Atlantic Oceans,the Indian Ocean has lacked in-situ observations of wind profiles over open sea areas for decades.In 2021,a shipborne coherent Doppler lidar(CDL)was used to observe in-situ wind profiles in the eastern tropical Indian Ocean.This equipment successfully captured low-level jets(LLJs)in the region,and their characteristics were thoroughly analyzed.Results reveal that the observed wind speed of LLJs in the eastern Indian Ocean ranges from 6 m s^(-1) to 10 m s^(-1) during the boreal winter and spring seasons,showing a height range of 0.6 to 1 km and two peak times at 0800 and 2000 UTC.This wind shear is weaker than that in land or offshore areas,ranging from 0 s^(-1) to 0.006 s^(-1).Moreover,the accuracy of the CDL data is compared to that of ERA5 data in the study area.The results indicate that the zonal wind from ERA5 data significantly deviated from the CDL measurement data,and the overall ERA5 data are substantially weaker than the in-situ observations.Notably,ERA5 underestimates northwestward LLJs.
基金financially supported by the National Key R&D Program of China (2022YFC3700400&2022YFB3901700)。
文摘As a new type of wind field detection equipment, coherent Doppler wind lidar(CDWL) still needs more relevant observation experiments to compare and verify whether it can achieve the accuracy and precision of traditional observation equipment in urban areas. In this experiment, a self-developed CDWL provided four months of observations in the southern Beijing area. After the data acquisition time and height match, the wind profile data obtained based on a Doppler beam swinging(DBS) five-beam inversion algorithm were compared with radiosonde data released from the same location. The standard deviation(SD) of wind speed is 0.8 m s^(–1), and the coefficient of determination R~2 is 0.95. The SD of the wind direction is 17.7° with an R~2 of 0.96. Below the height of the roughness sublayer(about 400 m), the error in wind speed and wind direction is significantly greater than the error above the height of the boundary layer(about 1500 m). For the case of wind speeds less than 4 m s^(–1), the error of wind direction is more significant and is affected by the distribution of surrounding buildings. Averaging at different height levels using suitable time windows can effectively reduce the effects of turbulence and thus reduce the error caused by the different measurement methods of the two devices.
文摘The laser device is the core component of coherent Doppler wind lidar.The peak power and pulse width of laser transmitting pulse have important effects on SNR.Based on coherent Doppler wind pulse lidar,the peak power and pulse width influence on SNR is studied on the theoretical derivation and analysis,and the results show that the higher the peak power can realize the greater the signal-to-noise ratio of coherent Doppler wind lidar.But when the peak power is too large,the laser pulse may appear nonlinear phenomenon,which cause the damage of the laser.So,the peak power must be less than the stimulated brillouin scattering power threshold.Increasing the pulse width can make the laser device to output more energy,but it will also make the spatial resolution lower,and the influence of turbulence on SNR will be greater.After a series of simulation analyses,it can be concluded that when the peak power is 650W and the pulse width is 340ns,the SNR of the system can be maximized.In addition,the coherent Doppler wind lidar system is set up to carry out corresponding experimental verification.The experimental results are consistent with the theoretical analysis and simulation,which verifies the correctness of the theoretical analysis and simulation results.It provides theoretical basis and practical ex-perience for the design of laser transmitting pulse in coherent Doppler wind lidar system.
基金National High Technology R&D Program of China(No.2014AA09A511)National Natural Science Foundation of China(Nos.41471309+3 种基金4137501661975191)National Key R&D Program of China(No.2016YFC1400904)The first author is supported by China Scholarship Council (CSC number: 201706330031). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and ECMWF for providing reanalysis datasets the in this publication.
文摘Shipborne observations obtained with the coherent Doppler lidar(CDL)and radiosonde during 2014 campaign were used to study the structure of marine boundary layer in the Yellow Sea.Vertical wind profiles corrected for ship motion was used to derive higher-order statistics,showing that motion correction is required and significant for turbulence analysis.During a day with weak mesoscale activity,a complexed three-layer structure system was observed.The lowest layer showed a typical stable boundary layer structure feature.An aerosol layer with abrupt variation in wind speed and relative humidity always appeared at the middle layer,the formation of which may be due to Kelvin-Helmholz instability.The top layer encountered a dramatic change in wind direction,which may result from the warm advection from the Eurasian continent on the basis of backward trajectory analysis.Furthermore,the MABL height in stable regime was derived from potential temperature,CDL signal-to-noise ratio(SNR)and CDL vertical velocity variance,respectively.The stable boundary layer(SBL)height in SBL can be derived from the inversion layer of potential temperature profile,and the mixing height in SBL can be retrieved from the vertical velocity variance gradient method.Neither the SBL height nor the mixing height is in agreement with the height retrieved from CDL SNR gradient method because of different definition and criterion.One of the limitations of SNR gradient method for MABL retrieval is that it is easier to be affected by the lofted decoupled aerosol layer,where the retrieved result is less suitable.Finally,the higher-order vertical velocity statistics within the marine stable boundary layer were investigated and compared with the previous studies,and different turbulence mechanisms have an important effect on the statistics deviation.