Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches ...Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we synthesize K-deficient layered manganese-based oxides(P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2))and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides(K_(x)MnO_(2))group,P2-K_(0.21)MnO_(2) delivers high discharge capacity of 99.3 mAh g^(-1) and P3-K_(0.23)MnO_(2) exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2) with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better understanding for the potassium storage in K-deficient layered K_(x)MnO_(2)(x≤0.23),possessing an important basic scientific significance for the exploitation and application of layered K_(x)MnO_(2) in PIBs.展开更多
Two-dimensional(2D)MoS_(2) nanomaterials have been extensively studied due to their special structure and high theoretical capacity,but it is still a huge challenge to improve its cycle stability and achieve superior ...Two-dimensional(2D)MoS_(2) nanomaterials have been extensively studied due to their special structure and high theoretical capacity,but it is still a huge challenge to improve its cycle stability and achieve superior fast charge and discharge performance.Herein,a facile one-step hydrothermal method is proposed to synthetize an ordered and self-assembled MoS_(2) nanoflower(MoS_(2)/C NF)with expanded interlayer spacing via embedding a carbon layer into the interlayer.The carbon layer in the MoS_(2) interlayer can speed the transfer of electrons,while the nanoflower structure promotes the ions transport and improves the structural stability during the charging/discharging process.Therefore,MoS_(2)/C NF electrode exhibits exceptional rate performance(318.2 and 302.3 mA·h·g^(-1) at 5.0 and 10.0 A·g^(-1),respectively)and extraordinary cycle durability(98.8%retention after 300 cycles at a current density of 1.0 A·g^(-1)).This work provides a simple and feasible method for constructing high-performance anode composites for sodium ion batteries with excellent cycle durability and fast charge/discharge ability.展开更多
A strategy for the preparation nitrogen-doped carbon encapsulated Si nanocomposite with a void layer(Si@void@NC)is proposed,in which the nitrogen doping content in the carbon layer is tunable.Aniline and ortho-phenyle...A strategy for the preparation nitrogen-doped carbon encapsulated Si nanocomposite with a void layer(Si@void@NC)is proposed,in which the nitrogen doping content in the carbon layer is tunable.Aniline and ortho-phenylenediamine are both selected as the nitrogen,carbon sources and co-polymerized on Si@SiO_(2),in which SiO_(2)is functionalized as a void template.SEM and TEM observation show that Si nanoparticles are encapsulated in a hollow and interconnected carbon cages with a thickness of less than 10 nm,which is inclined to agglomerate together to form larger particles in micrometer scale.The variation of mole ratio of aniline and ortho-phenylenediamine will enable the change of nitrogen doping level in the carbon layer and ranges from 3.2%to 8.4%.The nitrogen is doped into the carbon framework in the form of pyridinic,pyrrolic and graphitic nitrogen.Electrochemical tests indicate that the nitrogen content influences the SEI formation and the lithiation of Si nanoparticles.The potential for the decomposition of electrolyte to form SEI film and the alloying of Si-Li negatively shift when the nitrogen doping content is increased.Furthermore,the cycling performance of Si@void@NC is improved when raising the nitrogen content in the carbon.And the optimal nitrogen content is 7.5%,which is corresponding to the mole ratio of aniline to ortho-phenylenediamine is 5:5.展开更多
基金support from the Key Project of Guangdong Province Nature Science Foundation (No. 2017B030311013)the Scientific and Technological Plan of Guangdong Province, Guangzhou and Qingyuan City, China (Nos. 2019B090905005, 2019B090911004, 2017B020227009, 2019DZX008, 2019A004)+2 种基金the financial support from the National Key R&D Program of China (2018YFB1502600)the National Natural Science Foundation of China (No. 51922042 and 51872098)the Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510700, China.
文摘Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we synthesize K-deficient layered manganese-based oxides(P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2))and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides(K_(x)MnO_(2))group,P2-K_(0.21)MnO_(2) delivers high discharge capacity of 99.3 mAh g^(-1) and P3-K_(0.23)MnO_(2) exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2) with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better understanding for the potassium storage in K-deficient layered K_(x)MnO_(2)(x≤0.23),possessing an important basic scientific significance for the exploitation and application of layered K_(x)MnO_(2) in PIBs.
基金National Natural Science Foundation of China(51874142)Pearl River S&T Nova Program of Guangzhou(201806010031)+3 种基金the Fundamental Research Funds for the Central Universities(2019JQ09)Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06N569)Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(2019TQ05L903)Young Elite Scientists Sponsorship Program by CAST(2019QNRC001).
文摘Two-dimensional(2D)MoS_(2) nanomaterials have been extensively studied due to their special structure and high theoretical capacity,but it is still a huge challenge to improve its cycle stability and achieve superior fast charge and discharge performance.Herein,a facile one-step hydrothermal method is proposed to synthetize an ordered and self-assembled MoS_(2) nanoflower(MoS_(2)/C NF)with expanded interlayer spacing via embedding a carbon layer into the interlayer.The carbon layer in the MoS_(2) interlayer can speed the transfer of electrons,while the nanoflower structure promotes the ions transport and improves the structural stability during the charging/discharging process.Therefore,MoS_(2)/C NF electrode exhibits exceptional rate performance(318.2 and 302.3 mA·h·g^(-1) at 5.0 and 10.0 A·g^(-1),respectively)and extraordinary cycle durability(98.8%retention after 300 cycles at a current density of 1.0 A·g^(-1)).This work provides a simple and feasible method for constructing high-performance anode composites for sodium ion batteries with excellent cycle durability and fast charge/discharge ability.
基金supported by grants Hubei Province Technology Innovation Project(2018AAA056)Open Fund of Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy(HBSKFZD2017006)+1 种基金Innovative Research and Development Institute of Guangdong(No.2018B090902009)Innovation and entrepreneurship training program for College Students(No.201710500024).
文摘A strategy for the preparation nitrogen-doped carbon encapsulated Si nanocomposite with a void layer(Si@void@NC)is proposed,in which the nitrogen doping content in the carbon layer is tunable.Aniline and ortho-phenylenediamine are both selected as the nitrogen,carbon sources and co-polymerized on Si@SiO_(2),in which SiO_(2)is functionalized as a void template.SEM and TEM observation show that Si nanoparticles are encapsulated in a hollow and interconnected carbon cages with a thickness of less than 10 nm,which is inclined to agglomerate together to form larger particles in micrometer scale.The variation of mole ratio of aniline and ortho-phenylenediamine will enable the change of nitrogen doping level in the carbon layer and ranges from 3.2%to 8.4%.The nitrogen is doped into the carbon framework in the form of pyridinic,pyrrolic and graphitic nitrogen.Electrochemical tests indicate that the nitrogen content influences the SEI formation and the lithiation of Si nanoparticles.The potential for the decomposition of electrolyte to form SEI film and the alloying of Si-Li negatively shift when the nitrogen doping content is increased.Furthermore,the cycling performance of Si@void@NC is improved when raising the nitrogen content in the carbon.And the optimal nitrogen content is 7.5%,which is corresponding to the mole ratio of aniline to ortho-phenylenediamine is 5:5.