Platinum-based chemotherapeutic drugs such as cisplatin, carboplatin and oxaliplatin are widely applied for the treatment of various types of tumors. However, poor solubility, serious side effects, and more importantl...Platinum-based chemotherapeutic drugs such as cisplatin, carboplatin and oxaliplatin are widely applied for the treatment of various types of tumors. However, poor solubility, serious side effects, and more importantly, the intrinsic and acquired resistance limit their clinical applications. These factors motivate scientists to design and synthesize novel and more potent analogues lacking disadvantages of clinical platinum drugs. Platinum (IV) complexes are one of representatives. In this review, we summarized the investigations undertaken into Platinum (IV) antitumor compounds since Rosenberg first noted their antitumor activity. The synthesis method and mechanism of action of Platinum (IV) complexes are outlined, as well as their chemical and pharmacological properties. Recent advances in Platinum (IV) anticancer agents that have been in clinical trials and photoactivatable Platinum (IV) complexes are also summarized, and the purpose here is to provide insight into the requirements for the antitumor activity of Platinum (IV) complexes and a basis for progressing in a new platinum compound.展开更多
文摘Platinum-based chemotherapeutic drugs such as cisplatin, carboplatin and oxaliplatin are widely applied for the treatment of various types of tumors. However, poor solubility, serious side effects, and more importantly, the intrinsic and acquired resistance limit their clinical applications. These factors motivate scientists to design and synthesize novel and more potent analogues lacking disadvantages of clinical platinum drugs. Platinum (IV) complexes are one of representatives. In this review, we summarized the investigations undertaken into Platinum (IV) antitumor compounds since Rosenberg first noted their antitumor activity. The synthesis method and mechanism of action of Platinum (IV) complexes are outlined, as well as their chemical and pharmacological properties. Recent advances in Platinum (IV) anticancer agents that have been in clinical trials and photoactivatable Platinum (IV) complexes are also summarized, and the purpose here is to provide insight into the requirements for the antitumor activity of Platinum (IV) complexes and a basis for progressing in a new platinum compound.