The Floquet technology,a powerful way to manipulate quantum states,is employed to drive sidebands transition under large detuning.Our results demonstrate that high fidelities over 99%can be achieved through optimizing...The Floquet technology,a powerful way to manipulate quantum states,is employed to drive sidebands transition under large detuning.Our results demonstrate that high fidelities over 99%can be achieved through optimizing suitable modulation frequencies under large detuning.We observe high-fidelity transitions within a high bandwidth by utilizing a single modulation frequency and reveal that this capability is due to the emergence of a flat-band structure in the bandwidth range.The key finding of high-fidelity sideband manipulation under large detuning is experimentally confirmed in nuclear magnetic resonance platform.Finally,we propose a new parallel sideband cooling scheme that enables simultaneous cooling of multiple motional modes.This approach improves the cooling rate compared to conventional schemes with fixed laser frequency and power,and eliminates the need for mode-specific addressing.Our Floquet parallel scheme is applicable to any harmonic oscillator system and is not limited by bandwidth in theory.展开更多
In this paper, we introduce a new way to obtain the Q-P (P-Q) ordering of quantum mechanical operators, i.e., from the classical correspondence of Q-P (P-Q) ordered operators by replacing q and p with coordinate a...In this paper, we introduce a new way to obtain the Q-P (P-Q) ordering of quantum mechanical operators, i.e., from the classical correspondence of Q-P (P-Q) ordered operators by replacing q and p with coordinate and momentum operators, respectively. Some operator identities are derived concisely. As for its applications, the single (two-) mode squeezed operators and Fresnel operator are examined. It is shown that the classical correspondence of Fresnel operator’s Q-P (P-Q) ordering is just the integration kernel of Fresnel transformation. In addition, a new photo-counting formula is constructed by the Q-P ordering of operators.展开更多
Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin...Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.展开更多
Detecting gravity-mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics.We report the result of a simulation of the phenomenon using a photonic platform.The simulation tests t...Detecting gravity-mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics.We report the result of a simulation of the phenomenon using a photonic platform.The simulation tests the idea of probing the quantum nature of a variable by using it to mediate entanglement and yields theoretical and experimental insights,clarifying the operational tools needed for future gravitational experiments.We employ three methods to test the presence of entanglement:the Bell test,entanglement witness,and quantum state tomography.We also simulate the alternative scenario predicted by gravitational collapse models or due to imperfections in the experimental setup and use quantum state tomography to certify the absence of entanglement.The simulation reinforces two main lessons:(1)which path information must be first encoded and subsequently coherently erased from the gravitational field and(2)performing a Bell test leads to stronger conclusions,certifying the existence of gravity-mediated nonlocality.展开更多
Quantum sensing,using quantum properties of sensors,can enhance resolution,precision,and sensitivity of imaging,spectroscopy,and detection.An intriguing question is:Can the quantum nature(quantumness)of sensors and ta...Quantum sensing,using quantum properties of sensors,can enhance resolution,precision,and sensitivity of imaging,spectroscopy,and detection.An intriguing question is:Can the quantum nature(quantumness)of sensors and targets be exploited to enable schemes that are not possible for classical probes or classical targets?Here we show that measurement of the quantum correlations of a quantum target indeed allows for sensing schemes that have no classical counterparts.As a concrete example,in the case that the second-order classical correlation of a quantum target could be totally concealed by non-stationary classical noise,the higher-order quantum correlations can single out a quantum target from the classical noise background,regardless of the spectrum,statistics,or intensity of the noise.Hence a classical-noise-free sensing scheme is proposed.This finding suggests that the quantumness of sensors and targets is still to be explored to realize the full potential of quantum sensing.New opportunities include sensitivity beyond classical approaches,non-classical correlations as a new approach to quantum many-body physics,loophole-free tests of the quantum foundation,et cetera.展开更多
Based on the Weyl expansion representation of Wigner operator and its invariant property under similar transformation,we derived the relationship between input state and output state after a unitary transformation inc...Based on the Weyl expansion representation of Wigner operator and its invariant property under similar transformation,we derived the relationship between input state and output state after a unitary transformation including Wigner function and density operator.It is shown that they can be related by a transformation matrix corresponding to the unitary evolution.In addition,for any density operator going through a dissipative channel,the evolution formula of the Wigner function is also derived.As applications,we considered further the two-mode squeezed vacuum as inputs,and obtained the resulted Wigner function and density operator within normal ordering form.Our method is clear and concise,and can be easily extended to deal with other problems involved in quantum metrology,steering,and quantum information with continuous variable.展开更多
It is shown that the non-Gaussian operations can not only be used to prepare the nonclassical states, but also to improve the entanglement degree between Gaussian states. Thus these operations are naturally considered...It is shown that the non-Gaussian operations can not only be used to prepare the nonclassical states, but also to improve the entanglement degree between Gaussian states. Thus these operations are naturally considered to enhance the performance of continuous variable quantum key distribution(CVQKD), in which the non-Gaussian operations are usually placed on the right-side of the entangled source. Here we propose another scheme for further improving the performance of CVQKD with the entangled-based scheme by operating photon-addition operation on the left-side of the entangled source.It is found that the photon-addition operation on the left-side presents both higher success probability and better secure key rate and transmission distance than the photon subtraction on the right-side, although they share the same maximal tolerable noise. In addition, compared to both photon subtraction and photon addition on the right-side, our scheme shows the best performance and the photon addition on the right-side is the worst.展开更多
Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imper...Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.展开更多
It was recently noted that in certain nonmagnetic centrosymmetric compounds,spin–orbit interactions couple each local sector that lacks inversion symmetry,leading to visible spin polarization effects in the real spac...It was recently noted that in certain nonmagnetic centrosymmetric compounds,spin–orbit interactions couple each local sector that lacks inversion symmetry,leading to visible spin polarization effects in the real space,dubbed“hidden spin polarization(HSP)”.However,observable spin polarization of a given local sector suffers interference from its inversion partner,impeding material realization and potential applications of HSP.Starting from a single-orbital tight-binding model,we propose a nontrivial way to obtain strong sector-projected spin texture through the vanishing hybridization between inversion partners protected by nonsymmorphic symmetry.The HSP effect is generally compensated by inversion partners near the Г point but immune from the hopping effect around the boundary of the Brillouin zone.We further summarize 17 layer groups that support such symmetry-assisted HSP and identify hundreds of quasi-2D materials from the existing databases by first-principle calculations,among which a group of rare-earth compounds LnIO(Ln=Pr,Nd,Ho,Tm,and Lu)serves as great candidates showing strong Rashba-and Dresselhaus-type HSP.Our findings expand the material pool for potential spintronic applications and shed light on controlling HSP properties for emergent quantum phenomena.展开更多
BACKGROUND Radionuclides produce Cherenkov radiation(CR),which can potentially activate photosensitizers(PSs)in phototherapy.Several groups have studied Cherenkov energy transfer to PSs using optical imaging;however,c...BACKGROUND Radionuclides produce Cherenkov radiation(CR),which can potentially activate photosensitizers(PSs)in phototherapy.Several groups have studied Cherenkov energy transfer to PSs using optical imaging;however,cost-effectively identifying whether PSs are excited by radionuclide-derived CR and detecting fluorescence emission from excited PSs remain a challenge.Many laboratories face the need for expensive dedicated equipment.AIM To cost-effectively confirm whether PSs are excited by radionuclide-derived CR and distinguish fluorescence emission from excited PSs.METHODS The absorbance and fluorescence spectra of PSs were measured using a microplate reader and fluorescence spectrometer to examine the photo-physical properties of PSs.To mitigate the need for expensive dedicated equipment and achieve the aim of the study,we developed a method that utilizes a chargecoupled device optical imaging system and appropriate long-pass filters of different wavelengths(manual sequential application of long-pass filters of 515,580,645,700,750,and 800 nm).Tetrakis(4-carboxyphenyl)porphyrin(TCPP)was utilized as a model PS.Different doses of copper-64(^(64)CuCl_(2))(4,2,and 1 mCi)were used as CR-producing radionuclides.Imaging and data acquisition were performed 0.5 h after sample preparation.Differential image analysis was conducted by using ImageJ software(National Institutes of Health)to visually evaluate TCPP fluorescence.RESULTS The maximum absorbance of TCPP was at 390-430 nm,and the emission peak was at 670 nm.The CR and CRinduced TCPP emissions were observed using the optical imaging system and the high-transmittance long-pass filters described above.The emission spectra of TCPP with a peak in the 645-700 nm window were obtained by calculation and subtraction based on the serial signal intensity(total flux)difference between^(64)CuCl_(2)+TCPP and^(64)CuCl_(2).Moreover,the differential fluorescence images of TCPP were obtained by subtracting the^(64)CuCl_(2)image from the^(64)CuCl_(2)+TCPP image.The experimental results considering different^(64)CuCl_(2)doses showed a dosedependent trend.These results demonstrate that a bioluminescence imaging device coupled with different longpass filters and subtraction image processing can confirm the emission spectra and differential fluorescence images of CR-induced TCPP.CONCLUSION This simple method identifies the PS fluorescence emission generated by radionuclide-derived CR and can contribute to accelerating the development of Cherenkov energy transfer imaging and the discovery of new PSs.展开更多
In the integer and fractional quantum Hall effects, the electric current flows through a thin layer under the strong magnetic field. The diagonal resistance becomes very small at integer and specific fractional fillin...In the integer and fractional quantum Hall effects, the electric current flows through a thin layer under the strong magnetic field. The diagonal resistance becomes very small at integer and specific fractional filling factors where the electron scatterings are very few. Accordingly the coherent length is large and therefore a tunneling effect of electrons may be observed. We consider a new type of a quantum Hall device which has a narrow potential barrier in the thin layer. Then the electrons flow with tunneling effect through the potential barrier. When the oscillating magnetic field is applied in addition to the constant field, the voltage steps may appear in the curve of voltage V versus electric current I. If the voltage steps are found in the experiment, it is confirmed that the 2D electron system yields the same phenomenon as that of the ac-Josephson effect in a superconducting system. Furthermore the step V is related to the transfer charge Q as V = (hf)/Q where f is the frequency of the oscillating field and h is the Planck constant. Then the detection of the step V determines the transfer charge Q. The ratio Q/e (e is the elementary charge) clarifies the origin of the transfer charge. Many conditions are required for us to observe the tunneling phenomenon. The conditions are examined in details in this article.展开更多
The synthetic Floquet lattice,generated by multiple strong drives with mutually incommensurate frequencies,provides a powerful platform for quantum simulation of topological phenomena.In this study,we propose a 4-band...The synthetic Floquet lattice,generated by multiple strong drives with mutually incommensurate frequencies,provides a powerful platform for quantum simulation of topological phenomena.In this study,we propose a 4-band tight-binding model of the Chern insulator with a Chern number C=±2 by coupling two layers of the half Bernevig–Hughes–Zhang lattice and subsequently mapping it onto the Floquet lattice to simulate its topological properties.To determine the Chern number of our Floquet-version model,we extend the energy pumping method proposed by Martin et al.[2017 Phys.Rev.X 7041008]and the topological oscillation method introduced by Boyers et al.[2020 Phys.Rev.Lett.125160505],followed by numerical simulations for both methodologies.The simulation results demonstrate the successful extraction of the Chern number using either of these methods,providing an excellent prediction of the phase diagram that closely aligns with the theoretical one derived from the original bilayer half Bernevig–Hughes–Zhang model.Finally,we briefly discuss a potential experimental implementation for our model.Our work demonstrates significant potential for simulating complex topological matter using quantum computing platforms,thereby paving the way for constructing a more universal simulator for non-interacting topological quantum states and advancing our understanding of these intriguing phenomena.展开更多
The generation of a plasma with an ultrahigh energy density of 1.2 GJ/cm^(3)(which corresponds to about 12 Gbar pressure) is investigated by irradiating thin stainless-steel foils with high-contrast femtosecond laser ...The generation of a plasma with an ultrahigh energy density of 1.2 GJ/cm^(3)(which corresponds to about 12 Gbar pressure) is investigated by irradiating thin stainless-steel foils with high-contrast femtosecond laser pulses with relativistic intensities of up to 10^(22) W/cm^(2).The plasma parameters are determined by X-ray spectroscopy.The results show that most of the laser energy is absorbed by the plasma at solid density,indicating that no pre-plasma is generated in the current experimental setup.展开更多
We prepare a new type of patented biodegradable biomedical Mg-Nd-Zn-Zr(JDBM)alloy system and impose double continuously extrusion(DCE)processing.The lowest processing temperature is 250℃for JDBM-2.1Nd and 310℃for JD...We prepare a new type of patented biodegradable biomedical Mg-Nd-Zn-Zr(JDBM)alloy system and impose double continuously extrusion(DCE)processing.The lowest processing temperature is 250℃for JDBM-2.1Nd and 310℃for JDBM-2.8Nd,which increases with the Nd concentration.The highest yield strength of 541 MPa is achieved in JDBM-2.1 Nd samples when extruded at 250℃and the elongation is about 3.7%.Moreover,the alloy with a lower alloying element content can reach a higher yield strength while that with a higher alloying element content can reach a larger elongation after DCE processing.However,when extruded under the same conditions,the alloy with a higher alloying contents exhibits better tensile properties.展开更多
Four-qubit entanglement has been investigated using a recent proposed entanglement measure, multiple entropy measures (MEMS). We have performed optimization for the nine different families of states of four-qubit sy...Four-qubit entanglement has been investigated using a recent proposed entanglement measure, multiple entropy measures (MEMS). We have performed optimization for the nine different families of states of four-qubit system. Some extremal entangled states have been found.展开更多
Inspired by recent breakthroughs with topological quantum materials,which pave the way to novel,high-efficiency,low-energy magnetoelectric devices[1-3]and fault-tolerant quantum information processing[4],inter alia,to...Inspired by recent breakthroughs with topological quantum materials,which pave the way to novel,high-efficiency,low-energy magnetoelectric devices[1-3]and fault-tolerant quantum information processing[4],inter alia,topological quantum walks have emerged as an exciting topic in its own right,especially due to the theoretical and experimental simplifications this approach offers[5-14].Motivated by impressive progress in topological quantum walks,we provide a perspective on theoretical studies and experimental investigations of topological quantum walks focusing on current explorations of topological properties arising for single-walker quantum walks.展开更多
Future quantum technology relies crucially on building quantum networks with high fidelity.To achieve this challenging goal,it is of utmost importance to connect individual quantum systems such that their emitted sing...Future quantum technology relies crucially on building quantum networks with high fidelity.To achieve this challenging goal,it is of utmost importance to connect individual quantum systems such that their emitted single photons overlap with the highest possible degree of coherence.This requires perfect mode overlap of the emitted light from different emitters,which necessitates the use of single-mode fibres.Here,we present an advanced manufacturing approach to accomplish this task.We combined 3D printed complex micro-optics,such as hemispherical and Weierstrass solid immersion lenses,as well as total internal reflection solid immersion lenses,on top of individual indium arsenide quantum dots with 3D printed optics on single-mode fibres and compared their key features.We observed a systematic increase in the collection efficiency under variations of the lens geometry from roughly 2 for hemispheric solid immersion lenses up to a maximum of greater than 9 for the total internal reflection geometry.Furthermore,the temperature-induced stress was estimated for these particular lens dimensions and results to be approximately 5 meV.Interestingly,the use of solid immersion lenses further increased the localisation accuracy of the emitters to less than 1 nm when acquiring micro-photoluminescence maps.Furthermore,we show that the single-photon character of the source is preserved after device fabrication,reaching a g^((2))(0)value of approximately 0.19 under pulsed optical excitation.The printed lens device can be further joined with an optical fibre and permanently fixed.This integrated system can be cooled by dipping into liquid helium using a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows,as all access is through the integrated single-mode fibre.We identify the ideal optical designs and present experiments that demonstrate excellent high-rate single-photon emission.展开更多
Cavity-enhanced single quantum dots(QDs)are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies.Nevertheless,harnessing the Purcell effect requ...Cavity-enhanced single quantum dots(QDs)are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies.Nevertheless,harnessing the Purcell effect requires precise spectral and spatial alignment of the QDs’emission with the cavity mode,which is challenging for most cavities.Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator,and demonstrated a bright single-photon source derived from a deterministically coupled QD within this microcavity.Leveraging the cavity-membrane structures,we have achieved large spectral tunability via strain tuning.On resonance,a high Purcell factor of~9 is attained.The source delivers single photons with simultaneous high extraction efficiency of 0.58,high purity of 0.956(2)and high indistinguishability of 0.922(4).Together with its compact footprint,our scheme facilitates the scalable integration of indistinguishable quantum light sources on-chip,therefore removing a major barrier to the development of solid-state quantum information platforms based on QDs.展开更多
In this Letter, a new fractional entangling transformation (FRET) is proposed, which is generated in the entangled state representation by a unitary operator exp{iθ(ab^+ + a^+ b)} where a(b) is the Bosonic a...In this Letter, a new fractional entangling transformation (FRET) is proposed, which is generated in the entangled state representation by a unitary operator exp{iθ(ab^+ + a^+ b)} where a(b) is the Bosonic annihilate operator. The operator is actually an entangled one in quantum optics and differs evidently from the separable operator, exp(iθ(a^+a+ b^+ b)}, of complex fractional Fourier transformation. The additivity property is proved by employing the entangled state representation and quantum mechanical version of the FRET. As an application, the FrET of a two-mode number state is derived directly by using the quantum version of the FRET, which is related to Hermite polynomials.展开更多
Investigation on possible induction of adaptive response(AR)by high-liner energy transfer(LET)particle radiation for protection against low-LET photon radiation-induced detrimental effects has not yet been performed i...Investigation on possible induction of adaptive response(AR)by high-liner energy transfer(LET)particle radiation for protection against low-LET photon radiation-induced detrimental effects has not yet been performed in utero.This study verified if an AR could be induced by high-LET particle radiation from accelerated heavy ions against low-LET X-ray radiation-induced detrimental effects on fetal mice.Total body irradiation of pregnant C57BL/6J mice were performed by delivering a priming dose ranging from 10 mGy to 320 mGy of particle radiation on gestation day 11 followed one day later by a challenge dose at 3500 mGy from X-ray radiation.The monoenergetic beams of carbon,silicon and iron with the LET values of about 15,55,and 200 KeV/μm,respectively,were examined.Significant suppression by the priming radiation of the detrimental effects(fetal death,malformation,or low body weight)was used as the endpoints for judgment of a successful AR induction on gestation day 18.Existence of AR was not observed.On the other hand,the priming dose of high-LET particle radiation,in some cases,even increased the detrimental effects induced by the challenge dose from low-LET X-ray radiation.Although existence of AR induced by high-LET radiation in cultured mammalian cells in vitro and in certain tissues of laboratory mice in vivo was demonstrated,the present study did not suggest that low dose of high-LET particle radiation could induce an AR in fetal mice in utero under the setup of our experimental system.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11904402,12174447,12074433,12004430,and 12174448)。
文摘The Floquet technology,a powerful way to manipulate quantum states,is employed to drive sidebands transition under large detuning.Our results demonstrate that high fidelities over 99%can be achieved through optimizing suitable modulation frequencies under large detuning.We observe high-fidelity transitions within a high bandwidth by utilizing a single modulation frequency and reveal that this capability is due to the emergence of a flat-band structure in the bandwidth range.The key finding of high-fidelity sideband manipulation under large detuning is experimentally confirmed in nuclear magnetic resonance platform.Finally,we propose a new parallel sideband cooling scheme that enables simultaneous cooling of multiple motional modes.This approach improves the cooling rate compared to conventional schemes with fixed laser frequency and power,and eliminates the need for mode-specific addressing.Our Floquet parallel scheme is applicable to any harmonic oscillator system and is not limited by bandwidth in theory.
基金Project supported by the National Natural Science Foundation of China(Grant No.11264018)the Natural Science Foundation of Jiangxi Province of China(Grant No.20132BAB212006)the Fund from the Key Laboratory of Optoelectronics and Telecommunication of Jiangxi Province,China
文摘In this paper, we introduce a new way to obtain the Q-P (P-Q) ordering of quantum mechanical operators, i.e., from the classical correspondence of Q-P (P-Q) ordered operators by replacing q and p with coordinate and momentum operators, respectively. Some operator identities are derived concisely. As for its applications, the single (two-) mode squeezed operators and Fresnel operator are examined. It is shown that the classical correspondence of Fresnel operator’s Q-P (P-Q) ordering is just the integration kernel of Fresnel transformation. In addition, a new photo-counting formula is constructed by the Q-P ordering of operators.
基金This work was supported by the Major Scientific and Technological Special Project of Anhui Province(202103a13010004)the Major Scientific and Technological Special Project of Hefei City(2021DX007)+1 种基金the Key R&D Plan of Shandong Province(2020CXGC010105)the China Postdoctoral Science Foundation(2021M700315).
文摘Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.
基金support from the John Templeton Foundation,The Quantum Information Structure of Spacetime(QISS)Project(qiss.fr)(the opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the John Templeton Foundation)(Grant No.61466)and QISS2(Grant No.62312).
文摘Detecting gravity-mediated entanglement can provide evidence that the gravitational field obeys quantum mechanics.We report the result of a simulation of the phenomenon using a photonic platform.The simulation tests the idea of probing the quantum nature of a variable by using it to mediate entanglement and yields theoretical and experimental insights,clarifying the operational tools needed for future gravitational experiments.We employ three methods to test the presence of entanglement:the Bell test,entanglement witness,and quantum state tomography.We also simulate the alternative scenario predicted by gravitational collapse models or due to imperfections in the experimental setup and use quantum state tomography to certify the absence of entanglement.The simulation reinforces two main lessons:(1)which path information must be first encoded and subsequently coherently erased from the gravitational field and(2)performing a Bell test leads to stronger conclusions,certifying the existence of gravity-mediated nonlocality.
基金Supported by Hong Kong RGC/GRF Project(Grant No.14300119).
文摘Quantum sensing,using quantum properties of sensors,can enhance resolution,precision,and sensitivity of imaging,spectroscopy,and detection.An intriguing question is:Can the quantum nature(quantumness)of sensors and targets be exploited to enable schemes that are not possible for classical probes or classical targets?Here we show that measurement of the quantum correlations of a quantum target indeed allows for sensing schemes that have no classical counterparts.As a concrete example,in the case that the second-order classical correlation of a quantum target could be totally concealed by non-stationary classical noise,the higher-order quantum correlations can single out a quantum target from the classical noise background,regardless of the spectrum,statistics,or intensity of the noise.Hence a classical-noise-free sensing scheme is proposed.This finding suggests that the quantumness of sensors and targets is still to be explored to realize the full potential of quantum sensing.New opportunities include sensitivity beyond classical approaches,non-classical correlations as a new approach to quantum many-body physics,loophole-free tests of the quantum foundation,et cetera.
基金Project supported by the National Natural Science Foundation of China(Grant No.11664017)the Outstanding Young Talent Program of Jiangxi Province,China(Grant No.20171BCB23034)+1 种基金the Degree and Postgraduate Education Teaching Reform Project of Jiangxi Province,China(Grant No.JXYJG-2013-027)the Science Fund of the Education Department of Jiangxi Province,China(Grant No.GJJ170184)
文摘Based on the Weyl expansion representation of Wigner operator and its invariant property under similar transformation,we derived the relationship between input state and output state after a unitary transformation including Wigner function and density operator.It is shown that they can be related by a transformation matrix corresponding to the unitary evolution.In addition,for any density operator going through a dissipative channel,the evolution formula of the Wigner function is also derived.As applications,we considered further the two-mode squeezed vacuum as inputs,and obtained the resulted Wigner function and density operator within normal ordering form.Our method is clear and concise,and can be easily extended to deal with other problems involved in quantum metrology,steering,and quantum information with continuous variable.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11664017 and 11964013)the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province,China (Grant No. 20204BCJL22053)。
文摘It is shown that the non-Gaussian operations can not only be used to prepare the nonclassical states, but also to improve the entanglement degree between Gaussian states. Thus these operations are naturally considered to enhance the performance of continuous variable quantum key distribution(CVQKD), in which the non-Gaussian operations are usually placed on the right-side of the entangled source. Here we propose another scheme for further improving the performance of CVQKD with the entangled-based scheme by operating photon-addition operation on the left-side of the entangled source.It is found that the photon-addition operation on the left-side presents both higher success probability and better secure key rate and transmission distance than the photon subtraction on the right-side, although they share the same maximal tolerable noise. In addition, compared to both photon subtraction and photon addition on the right-side, our scheme shows the best performance and the photon addition on the right-side is the worst.
基金Supported by the Chinese Academy of Sciences, the National Basic Research Program of China under Grants Nos 2011CBA00200 and 2011CB921200, the National Natural Science Foundation of China under Grants Nos 61101137 and 61201239, the Program for Zhejiang Leading Team of Science and Technology Innovation under Grant No 2012r10011-12, and the Special Foundation for Young Scientists of Zhejiang Province under Grant No LQ13F050005.
文摘Although some ideal quantum key distribution protocols have been proved to be secure, there have been some demonstrations that practical quantum key distribution implementations were hacked due to some real-life imperfections. Among these attacks, detector side channel attacks may be the most serious. Recently, a measurement device independent quantum key distribution protocol [Phys. Rev. Lett. 108 (2012) 130503] was proposed and all detector side channel attacks are removed in this scheme. Here a new security proof based on quantum information theory is given. The eavesdropper's information of the sifted key bits is bounded. Then with this bound, the final secure key bit rate can be obtained.
基金National Natural Science Foundation of China(Grant No.11874195)the Guangdong Provincial Key Laboratory of Computational Science and Material Design(Grant No.2019B030301001)the Center for Computational Science and Engineering of SUSTech.
文摘It was recently noted that in certain nonmagnetic centrosymmetric compounds,spin–orbit interactions couple each local sector that lacks inversion symmetry,leading to visible spin polarization effects in the real space,dubbed“hidden spin polarization(HSP)”.However,observable spin polarization of a given local sector suffers interference from its inversion partner,impeding material realization and potential applications of HSP.Starting from a single-orbital tight-binding model,we propose a nontrivial way to obtain strong sector-projected spin texture through the vanishing hybridization between inversion partners protected by nonsymmorphic symmetry.The HSP effect is generally compensated by inversion partners near the Г point but immune from the hopping effect around the boundary of the Brillouin zone.We further summarize 17 layer groups that support such symmetry-assisted HSP and identify hundreds of quasi-2D materials from the existing databases by first-principle calculations,among which a group of rare-earth compounds LnIO(Ln=Pr,Nd,Ho,Tm,and Lu)serves as great candidates showing strong Rashba-and Dresselhaus-type HSP.Our findings expand the material pool for potential spintronic applications and shed light on controlling HSP properties for emergent quantum phenomena.
基金This study was reviewed and approved by the Institutional Review Board of National Institutes for Quantum Science and Technology,No.07-1064-28.No animals or animal-derived samples or patients or patient-derived samples were included in this study.
文摘BACKGROUND Radionuclides produce Cherenkov radiation(CR),which can potentially activate photosensitizers(PSs)in phototherapy.Several groups have studied Cherenkov energy transfer to PSs using optical imaging;however,cost-effectively identifying whether PSs are excited by radionuclide-derived CR and detecting fluorescence emission from excited PSs remain a challenge.Many laboratories face the need for expensive dedicated equipment.AIM To cost-effectively confirm whether PSs are excited by radionuclide-derived CR and distinguish fluorescence emission from excited PSs.METHODS The absorbance and fluorescence spectra of PSs were measured using a microplate reader and fluorescence spectrometer to examine the photo-physical properties of PSs.To mitigate the need for expensive dedicated equipment and achieve the aim of the study,we developed a method that utilizes a chargecoupled device optical imaging system and appropriate long-pass filters of different wavelengths(manual sequential application of long-pass filters of 515,580,645,700,750,and 800 nm).Tetrakis(4-carboxyphenyl)porphyrin(TCPP)was utilized as a model PS.Different doses of copper-64(^(64)CuCl_(2))(4,2,and 1 mCi)were used as CR-producing radionuclides.Imaging and data acquisition were performed 0.5 h after sample preparation.Differential image analysis was conducted by using ImageJ software(National Institutes of Health)to visually evaluate TCPP fluorescence.RESULTS The maximum absorbance of TCPP was at 390-430 nm,and the emission peak was at 670 nm.The CR and CRinduced TCPP emissions were observed using the optical imaging system and the high-transmittance long-pass filters described above.The emission spectra of TCPP with a peak in the 645-700 nm window were obtained by calculation and subtraction based on the serial signal intensity(total flux)difference between^(64)CuCl_(2)+TCPP and^(64)CuCl_(2).Moreover,the differential fluorescence images of TCPP were obtained by subtracting the^(64)CuCl_(2)image from the^(64)CuCl_(2)+TCPP image.The experimental results considering different^(64)CuCl_(2)doses showed a dosedependent trend.These results demonstrate that a bioluminescence imaging device coupled with different longpass filters and subtraction image processing can confirm the emission spectra and differential fluorescence images of CR-induced TCPP.CONCLUSION This simple method identifies the PS fluorescence emission generated by radionuclide-derived CR and can contribute to accelerating the development of Cherenkov energy transfer imaging and the discovery of new PSs.
文摘In the integer and fractional quantum Hall effects, the electric current flows through a thin layer under the strong magnetic field. The diagonal resistance becomes very small at integer and specific fractional filling factors where the electron scatterings are very few. Accordingly the coherent length is large and therefore a tunneling effect of electrons may be observed. We consider a new type of a quantum Hall device which has a narrow potential barrier in the thin layer. Then the electrons flow with tunneling effect through the potential barrier. When the oscillating magnetic field is applied in addition to the constant field, the voltage steps may appear in the curve of voltage V versus electric current I. If the voltage steps are found in the experiment, it is confirmed that the 2D electron system yields the same phenomenon as that of the ac-Josephson effect in a superconducting system. Furthermore the step V is related to the transfer charge Q as V = (hf)/Q where f is the frequency of the oscillating field and h is the Planck constant. Then the detection of the step V determines the transfer charge Q. The ratio Q/e (e is the elementary charge) clarifies the origin of the transfer charge. Many conditions are required for us to observe the tunneling phenomenon. The conditions are examined in details in this article.
基金supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302401)the Hunan Provincial Science Foundation for Distinguished Young Scholars(Grant No.2021JJ10043)the Open Research Fund from State Key Laboratory of High Performance Computing of China(HPCL)(Grant No.201901-09).
文摘The synthetic Floquet lattice,generated by multiple strong drives with mutually incommensurate frequencies,provides a powerful platform for quantum simulation of topological phenomena.In this study,we propose a 4-band tight-binding model of the Chern insulator with a Chern number C=±2 by coupling two layers of the half Bernevig–Hughes–Zhang lattice and subsequently mapping it onto the Floquet lattice to simulate its topological properties.To determine the Chern number of our Floquet-version model,we extend the energy pumping method proposed by Martin et al.[2017 Phys.Rev.X 7041008]and the topological oscillation method introduced by Boyers et al.[2020 Phys.Rev.Lett.125160505],followed by numerical simulations for both methodologies.The simulation results demonstrate the successful extraction of the Chern number using either of these methods,providing an excellent prediction of the phase diagram that closely aligns with the theoretical one derived from the original bilayer half Bernevig–Hughes–Zhang model.Finally,we briefly discuss a potential experimental implementation for our model.Our work demonstrates significant potential for simulating complex topological matter using quantum computing platforms,thereby paving the way for constructing a more universal simulator for non-interacting topological quantum states and advancing our understanding of these intriguing phenomena.
基金carried out within the framework of Program 10 “Experimental laboratory astrophysics and geophysics,NCPM.”。
文摘The generation of a plasma with an ultrahigh energy density of 1.2 GJ/cm^(3)(which corresponds to about 12 Gbar pressure) is investigated by irradiating thin stainless-steel foils with high-contrast femtosecond laser pulses with relativistic intensities of up to 10^(22) W/cm^(2).The plasma parameters are determined by X-ray spectroscopy.The results show that most of the laser energy is absorbed by the plasma at solid density,indicating that no pre-plasma is generated in the current experimental setup.
基金support by the national key research and development plan(No.2016YFC1102100)the National Natural Science Founda-tion of China(Nos.51501110,51728202,11332013 and 51501115)+1 种基金the Natural Science Foundation of Shang-hai(15ZR1422600)the Shanghai Jiao Tong University Medical-engineering Cross Fund(No.YG2015MS66 and No.YG2014MS62).
文摘We prepare a new type of patented biodegradable biomedical Mg-Nd-Zn-Zr(JDBM)alloy system and impose double continuously extrusion(DCE)processing.The lowest processing temperature is 250℃for JDBM-2.1Nd and 310℃for JDBM-2.8Nd,which increases with the Nd concentration.The highest yield strength of 541 MPa is achieved in JDBM-2.1 Nd samples when extruded at 250℃and the elongation is about 3.7%.Moreover,the alloy with a lower alloying element content can reach a higher yield strength while that with a higher alloying element content can reach a larger elongation after DCE processing.However,when extruded under the same conditions,the alloy with a higher alloying contents exhibits better tensile properties.
基金National Natural Science Foundation of China under Grant Nos.10325521 and 60433050the 973 Program under Grant No.2006CB921106
文摘Four-qubit entanglement has been investigated using a recent proposed entanglement measure, multiple entropy measures (MEMS). We have performed optimization for the nine different families of states of four-qubit system. Some extremal entangled states have been found.
基金Acknowledgements B.C.S.and J.W.are supported by the National Natural Science Foundation of China(NSFC)with Grant No.11675164.W.Z .is supported by the Australian Research Council(ARC)via the Centre of Excellence in Engineered Quantum Systems(EQuS)project number CE110001013,and USyd-SJTU Partnership Collaboration Awards.
文摘Inspired by recent breakthroughs with topological quantum materials,which pave the way to novel,high-efficiency,low-energy magnetoelectric devices[1-3]and fault-tolerant quantum information processing[4],inter alia,topological quantum walks have emerged as an exciting topic in its own right,especially due to the theoretical and experimental simplifications this approach offers[5-14].Motivated by impressive progress in topological quantum walks,we provide a perspective on theoretical studies and experimental investigations of topological quantum walks focusing on current explorations of topological properties arising for single-walker quantum walks.
基金We acknowledge the financial support of the German Federal Ministry of Science and Education[Bundesministerium fur Bildung und Forschung(BMBF)]via the projects Printoptics,Printfunction,and Q.link.X 16KIS0862support via the project EMPIR 17FUN06 SIQUST+1 种基金This project received funding from Baden-Württemberg-Stiftung via the Opterial projectThis project received funding from the EMPIR programme co-financed by the participating states and from the European Union’s Horizon 2020 research and innovation programme.Furthermore,funding was received from the European Research Council(ERC)via the projects AdG ComplexPlas and PoC 3D PrintedOptics.It was also funded by the Deutsche Forschungsgemeinschaft(DFG)via the projects SPP1839,SPP1929,GRK2642,as well as the Center for Integrated Quantum Science and Technology(IQST).
文摘Future quantum technology relies crucially on building quantum networks with high fidelity.To achieve this challenging goal,it is of utmost importance to connect individual quantum systems such that their emitted single photons overlap with the highest possible degree of coherence.This requires perfect mode overlap of the emitted light from different emitters,which necessitates the use of single-mode fibres.Here,we present an advanced manufacturing approach to accomplish this task.We combined 3D printed complex micro-optics,such as hemispherical and Weierstrass solid immersion lenses,as well as total internal reflection solid immersion lenses,on top of individual indium arsenide quantum dots with 3D printed optics on single-mode fibres and compared their key features.We observed a systematic increase in the collection efficiency under variations of the lens geometry from roughly 2 for hemispheric solid immersion lenses up to a maximum of greater than 9 for the total internal reflection geometry.Furthermore,the temperature-induced stress was estimated for these particular lens dimensions and results to be approximately 5 meV.Interestingly,the use of solid immersion lenses further increased the localisation accuracy of the emitters to less than 1 nm when acquiring micro-photoluminescence maps.Furthermore,we show that the single-photon character of the source is preserved after device fabrication,reaching a g^((2))(0)value of approximately 0.19 under pulsed optical excitation.The printed lens device can be further joined with an optical fibre and permanently fixed.This integrated system can be cooled by dipping into liquid helium using a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows,as all access is through the integrated single-mode fibre.We identify the ideal optical designs and present experiments that demonstrate excellent high-rate single-photon emission.
基金We acknowledge Jin Liu and Yu-Ming He for the valuable discussions.We are grateful for financial support from the Science and Technology Program of Guangzhou(202103030001)the Innovation Program for Quantum Science and Technology(2021ZD0301400,2021ZD0301605)+4 种基金the National Key R&D Program of Guang-dong Province(2020B0303020001)the National Natural Science Foundation of China(12074442,12074433,12174447)the Natural Science Foundation of Hunan Province(2021JJ20051)the science and technology innovation Program of Hunan Province(2021RC3084)the research program of national university of defense technology(ZK21-01,22-ZZCX-067).
文摘Cavity-enhanced single quantum dots(QDs)are the main approach towards ultra-high-performance solid-state quantum light sources for scalable photonic quantum technologies.Nevertheless,harnessing the Purcell effect requires precise spectral and spatial alignment of the QDs’emission with the cavity mode,which is challenging for most cavities.Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator,and demonstrated a bright single-photon source derived from a deterministically coupled QD within this microcavity.Leveraging the cavity-membrane structures,we have achieved large spectral tunability via strain tuning.On resonance,a high Purcell factor of~9 is attained.The source delivers single photons with simultaneous high extraction efficiency of 0.58,high purity of 0.956(2)and high indistinguishability of 0.922(4).Together with its compact footprint,our scheme facilitates the scalable integration of indistinguishable quantum light sources on-chip,therefore removing a major barrier to the development of solid-state quantum information platforms based on QDs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11264018 and11174118)the Natural Science Foundation of Jiangxi Province of China(Grant No.20132BAB212006)+1 种基金the Research Foundation of the Education Department of Jiangxi Province of China(No.GJJ14274)the Degree and Postgraduate Education Teaching Reform Project of Jiangxi Province(No.JXYJG-2013-027)
文摘In this Letter, a new fractional entangling transformation (FRET) is proposed, which is generated in the entangled state representation by a unitary operator exp{iθ(ab^+ + a^+ b)} where a(b) is the Bosonic annihilate operator. The operator is actually an entangled one in quantum optics and differs evidently from the separable operator, exp(iθ(a^+a+ b^+ b)}, of complex fractional Fourier transformation. The additivity property is proved by employing the entangled state representation and quantum mechanical version of the FRET. As an application, the FrET of a two-mode number state is derived directly by using the quantum version of the FRET, which is related to Hermite polynomials.
基金This research was financially supported in part by the Grant-in-Aid for Scientific Research(C)(JSPS KAKENHI 21510060 and JSPS KAKENHI 25340041)Research Project Grants with Heavy Ions at HIMAC,QST,Japan(19B-258 and 22B-258).
文摘Investigation on possible induction of adaptive response(AR)by high-liner energy transfer(LET)particle radiation for protection against low-LET photon radiation-induced detrimental effects has not yet been performed in utero.This study verified if an AR could be induced by high-LET particle radiation from accelerated heavy ions against low-LET X-ray radiation-induced detrimental effects on fetal mice.Total body irradiation of pregnant C57BL/6J mice were performed by delivering a priming dose ranging from 10 mGy to 320 mGy of particle radiation on gestation day 11 followed one day later by a challenge dose at 3500 mGy from X-ray radiation.The monoenergetic beams of carbon,silicon and iron with the LET values of about 15,55,and 200 KeV/μm,respectively,were examined.Significant suppression by the priming radiation of the detrimental effects(fetal death,malformation,or low body weight)was used as the endpoints for judgment of a successful AR induction on gestation day 18.Existence of AR was not observed.On the other hand,the priming dose of high-LET particle radiation,in some cases,even increased the detrimental effects induced by the challenge dose from low-LET X-ray radiation.Although existence of AR induced by high-LET radiation in cultured mammalian cells in vitro and in certain tissues of laboratory mice in vivo was demonstrated,the present study did not suggest that low dose of high-LET particle radiation could induce an AR in fetal mice in utero under the setup of our experimental system.