This paper focuses on pumped hydro energy storage(PHES)plants’current operations after electricity system reforms and variable renewable energy(VRE)installations in Japan.PHES plants have historically been developed ...This paper focuses on pumped hydro energy storage(PHES)plants’current operations after electricity system reforms and variable renewable energy(VRE)installations in Japan.PHES plants have historically been developed to create electricity demand at night in order to operate base load power plants,such as nuclear power plants,in stable conditions.Therefore,many PHES plants are located midway between nuclear power plants and large demand areas.However,all nuclear power plants had to–at least temporarily–shut down after the Great East Japan Earthquake followed by a nuclear accident at Fukushima Daiichi in 2011,and renewable energy power plants have been deployed rapidly after the introduction of a feed-in-tariff(FIT)scheme.Therefore,PHES plants are being used to mitigate fluctuations of VRE,especially in areas where renewable energy has been significantly installed.The daily highest capacity ratio of PHES plants in Kyushu area has recorded three times higher than it in the other areas where the past operating mode is still conducted.But those operations on PHES plants are simply followed as a dispatch rule of the Organization for Crossregional Coordination of Transmission Operators(OCCTO),market-based operations have not been conducted enough yet.The market design shall be changed to harmonize VRE installation and PHES plants’operations are necessary to make the transition from the past operating mode of PHES plants across Japan.展开更多
This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.T...This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.The project comprises two parts:the development of a system inertia observation technology using a continuous monitoring system to observe inertia and development of an inverter equipped with a function to provide virtual inertia as a countermeasure device.Utilizing both these efforts,the project aims to facilitate the introduction of renewable energy in the future with minimum restrictions.It was confirmed that the trend of inertia observed with the developed method was generally the same as that of the total inertia of synchronous machines observed by an electric utility.The effectiveness of the countermeasure device in reducing the frequency swing during a disturbance was confirmed through evaluation tests.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
This paper describes the results of cost-profit analysis related to interconnectors for Japan-Russia and JapanSouth Korea based on the Asia International Grid Connection Study Group 2^(nd) report. The Group has been e...This paper describes the results of cost-profit analysis related to interconnectors for Japan-Russia and JapanSouth Korea based on the Asia International Grid Connection Study Group 2^(nd) report. The Group has been established in 2016 for conducting research on international electric power networks in Asia from the viewpoint of technology, investment and legal framework. 2^(nd) report of the Group was published in June 2018, examining the profitability of an interconnectors between Japan and neighboring countries. The Group has calculated expected profit from operation of these interconnectors.The Group has categorized interconnector business into four models from the survey of preceding and current business on grids and interconnectors. To clarify profitability, expected internal rate of return(IRR) was calculated for each business model based on estimated investment cost for each route. When interconnector is dedicated to specific power plants or suppliers and electricity can be sold at Japan wholesale market at 2016-2017 price level, positive IRR levels are expected in case that Free on Board(FOB) price lower than 7 JPY/kWh. When the investment will be covered by electricity tariff by final consumers, tariff for consumers will just slightly increase by approximately 0.1 JPY/kWh.展开更多
This paper describes route designs and cost estimation for possible interconnections between Japan-Russia and between Japan-South Korea based on the Asia International Grid Connection Study Group 2^(nd) report. The Gr...This paper describes route designs and cost estimation for possible interconnections between Japan-Russia and between Japan-South Korea based on the Asia International Grid Connection Study Group 2^(nd) report. The Group has conducted a desktop study to design several cable routes as possible options. To optimize the route, the group studied a wide range of open data, regarding sea depth, fishery zones, geographic condition, available transmission capacity in connecting points inside Japan and so on. The result of desktop study shows that it is possible to keep sea depth for planned routes less than 300 m and length for most of designed routes is less than 600 km. Compare to existing undersea cables in Europe, proposed routes are not challenging from technical and geological viewpoints.The study shows that investment cost range, including cost for grid enhancement inside Japan, is from around 200 bn JPY to 600 bn JPY, depending on the routes. Annualized cost range is from around 8 to 24 bn JPY(for 25-year operation), which is not so large compare to 1800 bn JPY-average annual investment in transmission infrastructure by 10 power utilities in the past 23 years.展开更多
The amount of solar PV installed capacity has steadily increased to 44.5 GW at the end of FY2017,since the introduction of the Feed in Tariff(FiT)to Japan in 2012.On the other hand,since the first curtailment of solar...The amount of solar PV installed capacity has steadily increased to 44.5 GW at the end of FY2017,since the introduction of the Feed in Tariff(FiT)to Japan in 2012.On the other hand,since the first curtailment of solar PV was conducted on October 13th,2018 in the Kyushu area,the curtailment has been frequently executed including wind power after that.In this study,cross-regional interconnector and pumped hydro energy storage(PHES)are focused on mitigating curtailment.In Japan,there are 9 electric power areas which connected each other by cross-regional interconnectors.According to the historical operation,cross-regional interconnectors were secured as emergency flexible measures,but after the implicit auction was started from October 2018,it is used on merit order.Regarding a PHES in Japan,they have been built with nuclear power plants for several decades.Because the output of nuclear power generation is constant,so the PHES is used to absorb the surplus at nighttime when the demand declines.All nuclear power plants in Japan have been shut down after the accident at the Fukushima Daiichi Nuclear Power Plant following the Great East Japan Earthquake that occurred on March 11th,2011.There are several nuclear power plants that have been restarted(9 reactors,as of August 2019).In this study,the amount of curtailment for solar PV in the Kyushu area is sent to the Chugoku area using the cross-regional interconnector(Kanmon line).Then,the PHES in the Chugoku area is pumping with low price.Because the spot price in the market is low when the curtailment is executed.After that,the PHES is generating at night with high price when the solar PV is not generating.It makes a profit by the deference for the cost of pumping and the revenue of generating by the PHES.As a calculation result,for one week from May 2nd to 8th,2019,a profit becomes 152.2 million JPY(about 1.22 million EUR).For this purpose,it is necessary to raise the operation capacity of the cross-regional interconnector up to the rated capacity with the frequency control function of solar PV instead of the capacity to keep frequency in the event of an accident.This will allow the further introduction of solar PV in Japan.展开更多
Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A b...Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A broad absorption peak was observed in the visible region showing the formation of a variety of AgNPs in the solution. Among the variety of products, it was found that silver nanocubes (AgNCs) grew in size with longer laser irradiation time. The size of AgNCs also increased with higher laser intensity. The average size of AgNCs, investigated by a scanning electron microscope (SEM) was in the range of 75 - 200 nm. The number of reduced atoms in AgNCs as a function of laser intensity showed that the AgNCs are apparently produced by a four photon process, implying that the formation of dimer silver atoms is essential for the formation.展开更多
We conducted molecular dynamics (MD) simulations of tension and compression along the <112> direction and MD simulations of compression along the <110> and <111> directions on nanolaminated graphene/...We conducted molecular dynamics (MD) simulations of tension and compression along the <112> direction and MD simulations of compression along the <110> and <111> directions on nanolaminated graphene/Cu (NGCu) composites to investigate the effects of the incorporated graphene and the deformation mechanisms related to the loading direction. The deformation behavior and the defect structures were found to be strongly dependent on the loading conditions. An asymmetric tension-compression deformation behavior was thus found in graphene/Cu nanolaminates under the <112> loading, which was dominated by stacking faults and deformation twins formed by dislocation slide under tension and compression, respectively. High density and ordered nanotwins were formed at the graphene/Cu interfaces. Two different formation mechanisms of the twins were found under the <112> compression, and the nucleated twins were easy to be thickened with the assistance of the graphene wrinkles. Multiple twins were formed under the <110> compression by the dislocation cross-slip. This study provides a way to introduce graphene reinforcement and twin boundary to Cu matrix composites and design nanotwinned graphene/Cu composites with excellent mechanical performance.展开更多
Variable distributed energy resources (DERs) such as photovoltaic (PV) systems and wind power systems require additional power resources to control the balance between supply and demand. Battery energy storage systems...Variable distributed energy resources (DERs) such as photovoltaic (PV) systems and wind power systems require additional power resources to control the balance between supply and demand. Battery energy storage systems (BESSs) are one such possible resource for providing grid stability. It has been proposed that decentralized BESSs could help support microgrids (MGs) with intelligent control when advanced functionalities are implemented with variable DERs. One key challenge is developing and testing smart inverter controls for DERs. This paper presents a standardized method to test the interoperability and functionality of BESSs. First, a survey of grid-support standards prevalent in several countries was conducted. Then, the following four interoperability functions defined in IEC TR 61850-90-7 were tested: the specified active power from storage test (INV4), the var-priority Volt/VAR test (VV) and the specified power factor test (INV3) and frequency-watt control (FW). This study then out-lines the remaining technical issues related to basic BESS smart inverter test protocols.展开更多
In order to take advantage of the lignocellulosic material in water hyacinth (Eichhornia crassipes), dehydration pretreatment in the first step and then sodium hydroxide and hydrogen peroxide pretreatment was perfor...In order to take advantage of the lignocellulosic material in water hyacinth (Eichhornia crassipes), dehydration pretreatment in the first step and then sodium hydroxide and hydrogen peroxide pretreatment was performed. The microorganism used for the fermentation process was Zimomonas mobilis. Batch fermentation experiments were carried out with four tests using 22 factorial design with two levels leadings to evaluate the effect of NaOH concentration, conditioning salts as independent variables and ethanol produced as a dependent variable. The optimum condition with higher amount of glucose hydrolyzed and ethanol was: substrate conditioning cellulases, it was pretreated 10% NaOH, with 92.38% conversion of glucose to ethanol and yield of 0.47 g ethanol per g of glucose and 0.018 g ethanol per g of biomass.展开更多
Metal nanostructures have been of great research interest in recent years due to their physicochemical, plasmonic properties and potential applications. A lot of work has been done on the controlled synthesis of metal...Metal nanostructures have been of great research interest in recent years due to their physicochemical, plasmonic properties and potential applications. A lot of work has been done on the controlled synthesis of metal nanostructures for various applications. In this review, we try to focus on recent developments in synthesis and applications of metal nanostructures. Firstly, we summarized different preparation methods and then briefly explained their potential applications.展开更多
Recalcitrance and the inherent heterogeneity of lignin structure are the major bottlenecks to impede the popularization of lignin-based chemicals production processes.Recent works suggested a promising pathway for lig...Recalcitrance and the inherent heterogeneity of lignin structure are the major bottlenecks to impede the popularization of lignin-based chemicals production processes.Recent works suggested a promising pathway for lignin depolymerization and lignin-derived bio-oil upgrading via an electrochemical biorefinery(a process in which lignin valorization is performed via electrochemical oxidation or reduction).This review presents the progress on chemicals synthesis and bio-oil upgrading from lignin by an electrochemical biorefinery,relating to the lignin biosynthesis pathway,reaction pathway of lignin electrochemical conversion,inner-sphere and outer-sphere electron transfer mechanism,basic kinetics and thermodynamics in electrochemistry,and the recent embodiments analysis with the emphasis on the respective feature and limitation for lignin electrochemical oxidative and reductive conversion.Lastly,the challenge and perspective associated with lignin electrochemical biorefinery are discussed.Present-day results indicate that more work should be performed to promote efficiency,selectivity,and stability in pursuing a lignin electrochemical biorefinery.One of the most promising developing directions appears to be integrating various types of lignin electrochemical conversion strategies and other existing or evolving lignin valorization technologies.This review aims to provide more references and discussion on the development for lignin electrochemical biorefinery.展开更多
Fluid flow in fractures controls subsurface heat and mass transport,which is essential for developing enhanced geothermal systems and radioactive waste disposal.Fracture permeability is controlled by fracture microstr...Fluid flow in fractures controls subsurface heat and mass transport,which is essential for developing enhanced geothermal systems and radioactive waste disposal.Fracture permeability is controlled by fracture microstructure(e.g.aperture,roughness,and tortuosity),but in situ values and their anisotropy have not yet been estimated.Recent advances in geophysical techniques allow the detection of changes in electrical conductivity due to changes in crustal stress and these techniques can be used to predict subsurface fluid flow.However,the paucity of data on fractured rocks hinders the quantitative interpretation of geophysical monitoring data in the field.Therefore,considering different shear displacements and chemical erosions,an investigation was conducted into the hydraulic-electric relationship as an elevated stress change in fractures.The simulation of fracture flows was achieved using the lattice Boltzmann method,while the electrical properties were calculated through the finite element method,based on synthetic faults incorporating elastic-plastic deformation.Numerical results show that the hydraulic and electrical properties depend on the rock's geometric properties(i.e.fracture length,roughness,and shear displacement).The permeability anisotropy in the direction parallel or perpendicular to the shear displacement is also notable in high stress conditions.Conversely,the permeability econductivity(i.e.,formation factor)relationship is unique under all conditions and follows a linear trend in logarithmic coordinates.However,both matrix porosity and fracture spacing alter this relationship.Both increase the slope of the linear trend,thereby changing the sensitivity of electrical observations to permeability changes.展开更多
Advanced connectivity in substations brings along cybersecurity considerations. Especially, the use of standardized data objects and message structures stipulated by IEC 61850 makes them much more vulnerable to unauth...Advanced connectivity in substations brings along cybersecurity considerations. Especially, the use of standardized data objects and message structures stipulated by IEC 61850 makes them much more vulnerable to unauthorized access and manipulation. In order to tackle these vulnerabilities, different methods are investigated by researchers all over the world. An important aspect of such efforts is the real-time performance consideration since power systems are bound by the rules of physics and all control/communication tasks need to be completed in a certain time frame. Security schemes for substation communication have been proposed in the recent literature. However, they must be improved to ensure a full security solution. Recently published IEC 62351 standard aims to fill this gap. Node authentication is vital for substation communication networks based on IEC 61850 to mitigate a variety of attacks such as man-in-the-middle(MITM) attack. This short communication presents a node authentication mechanism based on transport layer security(TLS) with certificates to address this knowledge gap. It also investigates the real-time performance by implementing the proposed scheme with Python.展开更多
Flexible and lightweight thermal insulation materials with hierarchical microstructures are ubiquitous in thermal management and protection systems.Ceramic aerogels promise high-temperature thermal insulation but lack...Flexible and lightweight thermal insulation materials with hierarchical microstructures are ubiquitous in thermal management and protection systems.Ceramic aerogels promise high-temperature thermal insulation but lack mechanical robustness,while the fibrous materials with excellent mechanical elasticity display modest thermal insulation.Here we describe flexible hierarchical superhydrophobic ceramic insulation nanocomposites through the densified architectured hierarchical nanostructures,radiative insulation coating,and interfacial cross-linking among composites.The lightweight flexible ceramic nanocomposites exhibit a density of 0.13 g/cm^(3),high-temperature fire resistance with thermal conductivity of 0.024 W/(m·K),and super-hydrophobicity with the water contact angle of 152°.The mechanical robustness and high-temperature thermal insulation of ceramic nanocomposites,together with its soundproof performance,shed light on the low-cost flexible insulation materials manufacturing with scalability for high-temperature thermal insulation applications under high mechanical loading conditions.展开更多
The wetted perimeter method(WPM) is used in hydrology and hydraulics to calculate instream flows.The WPM requires few data.It requires only the values of the wetted perimeter,flow and water level,which can be obtained...The wetted perimeter method(WPM) is used in hydrology and hydraulics to calculate instream flows.The WPM requires few data.It requires only the values of the wetted perimeter,flow and water level,which can be obtained from the hydrologic stations of the river in question.In addition,the WPM is not limited by the impacts of human activities on the river runoff.Therefore,this method is generally suitable for the current conditions in China.However,the process of applying the WPM involves two key aspects:how to plot the curve describing the relationship between the wetted perimeter and the discharge and how to confirm the breakpoint of the wetted perimeter-discharge curve.The traditional method is to calculate the curvature or the slope of the wetted perimeter-discharge curve to obtain the minimum flow.According to this method,the minimum flow corresponds to the point of maximum curvature or to the point at which the slope of the curve is equal to 1.The wetted perimeter-discharge curve of a natural river is only part of the complete curve.Thus,the instream flow calculated by the traditional method is the minimum or maximum discharge.The new criterion for defining the breakpoint of the wetted perimeter-discharge curve is that the slope at the breakpoint is a relative maximum,the second-largest slope.The discharges at the breakpoints corresponded to the minimum flow levels required to maintain the ecological function of the river.The minimum instream flow requirements(MIFRs) of four typical reaches,Zhuba,Daofu,Ganzi and Zumuzu hydrological stations on the West Course of the First Stage Project of the South-North Water Transfer Project(WCFSPSNWTP),are calculated using an improved wetted perimeter method(IWPM).The results show that the MIFRs of Zhuba,Daofu,Ganzi and Zumuzu are approximately 9.06-14.5 m 3 s-1,20.7-43.5 m3 s-1,38.8-77.2 m 3 s-1 and 40.4-59.5 m 3 s-1,corresponding to 11.7%-33.9%,14.2%-37.6%,12.4%-28.4% and 17.5%-30.2%,respectively of the annual average flow(AAF).These MIFRs can maintain good ecological function in a river according to the criterion furnished by the Tennant method.展开更多
Clothing and textiles are very challenging to recycle due to the fact that they are nearly always a blend of fibres from different types of polymers.There are some promising early indications that new green solvents i...Clothing and textiles are very challenging to recycle due to the fact that they are nearly always a blend of fibres from different types of polymers.There are some promising early indications that new green solvents including CyreneTM and TMO as well as some simple ionic liquids can be used to aid recycling of complex fabrics by selective dissolution of one of the component polymers.A viable process for the future valorisation of many waste fabrics should be designed to maximise the creation of valuable product streams while also minimising any waste.展开更多
Thermochemical biomass gasification,followedby conversion of the produced syngas to fuels andelectrical power,is a promising energy alternative.Realworldcharacterization of particulate matter(PM)and othercontaminants ...Thermochemical biomass gasification,followedby conversion of the produced syngas to fuels andelectrical power,is a promising energy alternative.Realworldcharacterization of particulate matter(PM)and othercontaminants in the syngas is important to minimizedamage and ensure efficient operation of the engines itpowers and the fuels created from it.A dilution samplingsystem is demonstrated to quantify PM in syngas generatedfrom two gasification plants utilizing different biomassfeedstocks:a BioMax®15 Biopower System that uses rawand torrefied woodchips as feedstocks,and an integratedbiorefinery(IBR)that uses rice hulls and woodchips asfeedstocks.PM_(2.5)mass concentrations in syngas from theIBR downstream of the purification system were 12.8-13.7μg·m^(-3),which were significantly lower than themaximum level for catalyst protection(500μg·m^(-3))andwere 2-3 orders of magnitude lower than those inBioMax®15 syngas(2247-4835μg·m^(-3)).Ultrafine particlenumber concentration and PM_(2.5)chemical constituentswere also much lower in the IBR syngas than in theBioMax®15.The dilution sampling system enabledreliable measurements over a wide range of concentrations:the use of high sensitivity instruments allowed measurementat very low concentrations(~1μg·m^(-3)),while theflexibility of dilution minimized sampling problems thatare commonly encountered due to high levels of tars in rawsyngas(~1 g·m^(-3)).展开更多
Asymmetric catalysis has been one of the most effective strategies for building up a chirality in the favored stereoisomer. Over the past decades, various sophisticated chiral ligands and catalysts have been well-desi...Asymmetric catalysis has been one of the most effective strategies for building up a chirality in the favored stereoisomer. Over the past decades, various sophisticated chiral ligands and catalysts have been well-designed, which enable great advances in enantioselective chemical transformations, for achieving excellent selectivity and activity.展开更多
文摘This paper focuses on pumped hydro energy storage(PHES)plants’current operations after electricity system reforms and variable renewable energy(VRE)installations in Japan.PHES plants have historically been developed to create electricity demand at night in order to operate base load power plants,such as nuclear power plants,in stable conditions.Therefore,many PHES plants are located midway between nuclear power plants and large demand areas.However,all nuclear power plants had to–at least temporarily–shut down after the Great East Japan Earthquake followed by a nuclear accident at Fukushima Daiichi in 2011,and renewable energy power plants have been deployed rapidly after the introduction of a feed-in-tariff(FIT)scheme.Therefore,PHES plants are being used to mitigate fluctuations of VRE,especially in areas where renewable energy has been significantly installed.The daily highest capacity ratio of PHES plants in Kyushu area has recorded three times higher than it in the other areas where the past operating mode is still conducted.But those operations on PHES plants are simply followed as a dispatch rule of the Organization for Crossregional Coordination of Transmission Operators(OCCTO),market-based operations have not been conducted enough yet.The market design shall be changed to harmonize VRE installation and PHES plants’operations are necessary to make the transition from the past operating mode of PHES plants across Japan.
基金based on the results obtained from a project(JPNP19002)commissioned by the New Energy and Industrial Technology Development Organization(NEDO)supported by the TEPCO Power Grid,Inc.+9 种基金Tohoku Electric Power Network Co.,Inc.Chubu Electric Power Co.,Inc.Chubu Electric Power Grid Co.,Inc.Kansai Transmission and Distribution,Inc.Chugoku Electric Power Transmission and Distribution Co.,Inc.Kyushu Electric Power Co.,Inc.Kyushu Electric Power Transmission and Distribution Co.,Inc.Takaoka Toko Co.,Ltd.Tokushima UniversityOsaka Prefectural University。
文摘This paper reports on the status of technology development under a national project launched in 2019 to address the problem of decreased system inertia associated with the large-scale integration of renewable energy.The project comprises two parts:the development of a system inertia observation technology using a continuous monitoring system to observe inertia and development of an inverter equipped with a function to provide virtual inertia as a countermeasure device.Utilizing both these efforts,the project aims to facilitate the introduction of renewable energy in the future with minimum restrictions.It was confirmed that the trend of inertia observed with the developed method was generally the same as that of the total inertia of synchronous machines observed by an electric utility.The effectiveness of the countermeasure device in reducing the frequency swing during a disturbance was confirmed through evaluation tests.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
文摘This paper describes the results of cost-profit analysis related to interconnectors for Japan-Russia and JapanSouth Korea based on the Asia International Grid Connection Study Group 2^(nd) report. The Group has been established in 2016 for conducting research on international electric power networks in Asia from the viewpoint of technology, investment and legal framework. 2^(nd) report of the Group was published in June 2018, examining the profitability of an interconnectors between Japan and neighboring countries. The Group has calculated expected profit from operation of these interconnectors.The Group has categorized interconnector business into four models from the survey of preceding and current business on grids and interconnectors. To clarify profitability, expected internal rate of return(IRR) was calculated for each business model based on estimated investment cost for each route. When interconnector is dedicated to specific power plants or suppliers and electricity can be sold at Japan wholesale market at 2016-2017 price level, positive IRR levels are expected in case that Free on Board(FOB) price lower than 7 JPY/kWh. When the investment will be covered by electricity tariff by final consumers, tariff for consumers will just slightly increase by approximately 0.1 JPY/kWh.
文摘This paper describes route designs and cost estimation for possible interconnections between Japan-Russia and between Japan-South Korea based on the Asia International Grid Connection Study Group 2^(nd) report. The Group has conducted a desktop study to design several cable routes as possible options. To optimize the route, the group studied a wide range of open data, regarding sea depth, fishery zones, geographic condition, available transmission capacity in connecting points inside Japan and so on. The result of desktop study shows that it is possible to keep sea depth for planned routes less than 300 m and length for most of designed routes is less than 600 km. Compare to existing undersea cables in Europe, proposed routes are not challenging from technical and geological viewpoints.The study shows that investment cost range, including cost for grid enhancement inside Japan, is from around 200 bn JPY to 600 bn JPY, depending on the routes. Annualized cost range is from around 8 to 24 bn JPY(for 25-year operation), which is not so large compare to 1800 bn JPY-average annual investment in transmission infrastructure by 10 power utilities in the past 23 years.
文摘The amount of solar PV installed capacity has steadily increased to 44.5 GW at the end of FY2017,since the introduction of the Feed in Tariff(FiT)to Japan in 2012.On the other hand,since the first curtailment of solar PV was conducted on October 13th,2018 in the Kyushu area,the curtailment has been frequently executed including wind power after that.In this study,cross-regional interconnector and pumped hydro energy storage(PHES)are focused on mitigating curtailment.In Japan,there are 9 electric power areas which connected each other by cross-regional interconnectors.According to the historical operation,cross-regional interconnectors were secured as emergency flexible measures,but after the implicit auction was started from October 2018,it is used on merit order.Regarding a PHES in Japan,they have been built with nuclear power plants for several decades.Because the output of nuclear power generation is constant,so the PHES is used to absorb the surplus at nighttime when the demand declines.All nuclear power plants in Japan have been shut down after the accident at the Fukushima Daiichi Nuclear Power Plant following the Great East Japan Earthquake that occurred on March 11th,2011.There are several nuclear power plants that have been restarted(9 reactors,as of August 2019).In this study,the amount of curtailment for solar PV in the Kyushu area is sent to the Chugoku area using the cross-regional interconnector(Kanmon line).Then,the PHES in the Chugoku area is pumping with low price.Because the spot price in the market is low when the curtailment is executed.After that,the PHES is generating at night with high price when the solar PV is not generating.It makes a profit by the deference for the cost of pumping and the revenue of generating by the PHES.As a calculation result,for one week from May 2nd to 8th,2019,a profit becomes 152.2 million JPY(about 1.22 million EUR).For this purpose,it is necessary to raise the operation capacity of the cross-regional interconnector up to the rated capacity with the frequency control function of solar PV instead of the capacity to keep frequency in the event of an accident.This will allow the further introduction of solar PV in Japan.
文摘Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A broad absorption peak was observed in the visible region showing the formation of a variety of AgNPs in the solution. Among the variety of products, it was found that silver nanocubes (AgNCs) grew in size with longer laser irradiation time. The size of AgNCs also increased with higher laser intensity. The average size of AgNCs, investigated by a scanning electron microscope (SEM) was in the range of 75 - 200 nm. The number of reduced atoms in AgNCs as a function of laser intensity showed that the AgNCs are apparently produced by a four photon process, implying that the formation of dimer silver atoms is essential for the formation.
基金financial support from National Natural Science Foundation of China (grant nos. U1864208, 51603022, 11632004, 11802045)Fundamental Research Funds for the Central Universities (grant no. 106112017CDJXSYY0001)+3 种基金the Key Program for International Science and Technology Cooperation Projects of Ministry of Science and Technology of China (grant no. 2016YFE0125900)State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (grant no. 31715007)the Postdoctoral Program for Innovative Talents of Chongqing (grant no. CQBX201804)the China Postdoctoral Science Foundation funded project (grant no. 2018M631058)
文摘We conducted molecular dynamics (MD) simulations of tension and compression along the <112> direction and MD simulations of compression along the <110> and <111> directions on nanolaminated graphene/Cu (NGCu) composites to investigate the effects of the incorporated graphene and the deformation mechanisms related to the loading direction. The deformation behavior and the defect structures were found to be strongly dependent on the loading conditions. An asymmetric tension-compression deformation behavior was thus found in graphene/Cu nanolaminates under the <112> loading, which was dominated by stacking faults and deformation twins formed by dislocation slide under tension and compression, respectively. High density and ordered nanotwins were formed at the graphene/Cu interfaces. Two different formation mechanisms of the twins were found under the <112> compression, and the nucleated twins were easy to be thickened with the assistance of the graphene wrinkles. Multiple twins were formed under the <110> compression by the dislocation cross-slip. This study provides a way to introduce graphene reinforcement and twin boundary to Cu matrix composites and design nanotwinned graphene/Cu composites with excellent mechanical performance.
文摘Variable distributed energy resources (DERs) such as photovoltaic (PV) systems and wind power systems require additional power resources to control the balance between supply and demand. Battery energy storage systems (BESSs) are one such possible resource for providing grid stability. It has been proposed that decentralized BESSs could help support microgrids (MGs) with intelligent control when advanced functionalities are implemented with variable DERs. One key challenge is developing and testing smart inverter controls for DERs. This paper presents a standardized method to test the interoperability and functionality of BESSs. First, a survey of grid-support standards prevalent in several countries was conducted. Then, the following four interoperability functions defined in IEC TR 61850-90-7 were tested: the specified active power from storage test (INV4), the var-priority Volt/VAR test (VV) and the specified power factor test (INV3) and frequency-watt control (FW). This study then out-lines the remaining technical issues related to basic BESS smart inverter test protocols.
文摘In order to take advantage of the lignocellulosic material in water hyacinth (Eichhornia crassipes), dehydration pretreatment in the first step and then sodium hydroxide and hydrogen peroxide pretreatment was performed. The microorganism used for the fermentation process was Zimomonas mobilis. Batch fermentation experiments were carried out with four tests using 22 factorial design with two levels leadings to evaluate the effect of NaOH concentration, conditioning salts as independent variables and ethanol produced as a dependent variable. The optimum condition with higher amount of glucose hydrolyzed and ethanol was: substrate conditioning cellulases, it was pretreated 10% NaOH, with 92.38% conversion of glucose to ethanol and yield of 0.47 g ethanol per g of glucose and 0.018 g ethanol per g of biomass.
文摘Metal nanostructures have been of great research interest in recent years due to their physicochemical, plasmonic properties and potential applications. A lot of work has been done on the controlled synthesis of metal nanostructures for various applications. In this review, we try to focus on recent developments in synthesis and applications of metal nanostructures. Firstly, we summarized different preparation methods and then briefly explained their potential applications.
基金supported by the National Natural Science Foundation of China(21876030)the International Cooperation Project of Science and Technology Commission of Shanghai Municipality(18230710700)。
文摘Recalcitrance and the inherent heterogeneity of lignin structure are the major bottlenecks to impede the popularization of lignin-based chemicals production processes.Recent works suggested a promising pathway for lignin depolymerization and lignin-derived bio-oil upgrading via an electrochemical biorefinery(a process in which lignin valorization is performed via electrochemical oxidation or reduction).This review presents the progress on chemicals synthesis and bio-oil upgrading from lignin by an electrochemical biorefinery,relating to the lignin biosynthesis pathway,reaction pathway of lignin electrochemical conversion,inner-sphere and outer-sphere electron transfer mechanism,basic kinetics and thermodynamics in electrochemistry,and the recent embodiments analysis with the emphasis on the respective feature and limitation for lignin electrochemical oxidative and reductive conversion.Lastly,the challenge and perspective associated with lignin electrochemical biorefinery are discussed.Present-day results indicate that more work should be performed to promote efficiency,selectivity,and stability in pursuing a lignin electrochemical biorefinery.One of the most promising developing directions appears to be integrating various types of lignin electrochemical conversion strategies and other existing or evolving lignin valorization technologies.This review aims to provide more references and discussion on the development for lignin electrochemical biorefinery.
基金supported in part by the Japan Society for the Promotion of Science (JSPS)under JSPS KAKENHI (Grant Nos.JP22K14635 and JP22H05303)a supporting program titled“Program to Support Research and Investigation on Important Basic Technologies Related to Radioactive Waste (2023 FY)”under the contract with the Ministry of Economy,Trade and Industry,Japan.
文摘Fluid flow in fractures controls subsurface heat and mass transport,which is essential for developing enhanced geothermal systems and radioactive waste disposal.Fracture permeability is controlled by fracture microstructure(e.g.aperture,roughness,and tortuosity),but in situ values and their anisotropy have not yet been estimated.Recent advances in geophysical techniques allow the detection of changes in electrical conductivity due to changes in crustal stress and these techniques can be used to predict subsurface fluid flow.However,the paucity of data on fractured rocks hinders the quantitative interpretation of geophysical monitoring data in the field.Therefore,considering different shear displacements and chemical erosions,an investigation was conducted into the hydraulic-electric relationship as an elevated stress change in fractures.The simulation of fracture flows was achieved using the lattice Boltzmann method,while the electrical properties were calculated through the finite element method,based on synthetic faults incorporating elastic-plastic deformation.Numerical results show that the hydraulic and electrical properties depend on the rock's geometric properties(i.e.fracture length,roughness,and shear displacement).The permeability anisotropy in the direction parallel or perpendicular to the shear displacement is also notable in high stress conditions.Conversely,the permeability econductivity(i.e.,formation factor)relationship is unique under all conditions and follows a linear trend in logarithmic coordinates.However,both matrix porosity and fracture spacing alter this relationship.Both increase the slope of the linear trend,thereby changing the sensitivity of electrical observations to permeability changes.
文摘Advanced connectivity in substations brings along cybersecurity considerations. Especially, the use of standardized data objects and message structures stipulated by IEC 61850 makes them much more vulnerable to unauthorized access and manipulation. In order to tackle these vulnerabilities, different methods are investigated by researchers all over the world. An important aspect of such efforts is the real-time performance consideration since power systems are bound by the rules of physics and all control/communication tasks need to be completed in a certain time frame. Security schemes for substation communication have been proposed in the recent literature. However, they must be improved to ensure a full security solution. Recently published IEC 62351 standard aims to fill this gap. Node authentication is vital for substation communication networks based on IEC 61850 to mitigate a variety of attacks such as man-in-the-middle(MITM) attack. This short communication presents a node authentication mechanism based on transport layer security(TLS) with certificates to address this knowledge gap. It also investigates the real-time performance by implementing the proposed scheme with Python.
基金We gratefully acknowledge support from the U.S.Department of Energy(DOE),Office of Energy Efficiency and Renewable Energy(EERE)under the Building Technology Office(BTO)Award(No.DE-EE0008675).
文摘Flexible and lightweight thermal insulation materials with hierarchical microstructures are ubiquitous in thermal management and protection systems.Ceramic aerogels promise high-temperature thermal insulation but lack mechanical robustness,while the fibrous materials with excellent mechanical elasticity display modest thermal insulation.Here we describe flexible hierarchical superhydrophobic ceramic insulation nanocomposites through the densified architectured hierarchical nanostructures,radiative insulation coating,and interfacial cross-linking among composites.The lightweight flexible ceramic nanocomposites exhibit a density of 0.13 g/cm^(3),high-temperature fire resistance with thermal conductivity of 0.024 W/(m·K),and super-hydrophobicity with the water contact angle of 152°.The mechanical robustness and high-temperature thermal insulation of ceramic nanocomposites,together with its soundproof performance,shed light on the low-cost flexible insulation materials manufacturing with scalability for high-temperature thermal insulation applications under high mechanical loading conditions.
基金supported by the National Natural Science Foundation of China (Grant No. 50809027)the Fundamental Research Funds for the Central Universities (Grant No. 11MG15)the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science (Grant No. 2009B050)
文摘The wetted perimeter method(WPM) is used in hydrology and hydraulics to calculate instream flows.The WPM requires few data.It requires only the values of the wetted perimeter,flow and water level,which can be obtained from the hydrologic stations of the river in question.In addition,the WPM is not limited by the impacts of human activities on the river runoff.Therefore,this method is generally suitable for the current conditions in China.However,the process of applying the WPM involves two key aspects:how to plot the curve describing the relationship between the wetted perimeter and the discharge and how to confirm the breakpoint of the wetted perimeter-discharge curve.The traditional method is to calculate the curvature or the slope of the wetted perimeter-discharge curve to obtain the minimum flow.According to this method,the minimum flow corresponds to the point of maximum curvature or to the point at which the slope of the curve is equal to 1.The wetted perimeter-discharge curve of a natural river is only part of the complete curve.Thus,the instream flow calculated by the traditional method is the minimum or maximum discharge.The new criterion for defining the breakpoint of the wetted perimeter-discharge curve is that the slope at the breakpoint is a relative maximum,the second-largest slope.The discharges at the breakpoints corresponded to the minimum flow levels required to maintain the ecological function of the river.The minimum instream flow requirements(MIFRs) of four typical reaches,Zhuba,Daofu,Ganzi and Zumuzu hydrological stations on the West Course of the First Stage Project of the South-North Water Transfer Project(WCFSPSNWTP),are calculated using an improved wetted perimeter method(IWPM).The results show that the MIFRs of Zhuba,Daofu,Ganzi and Zumuzu are approximately 9.06-14.5 m 3 s-1,20.7-43.5 m3 s-1,38.8-77.2 m 3 s-1 and 40.4-59.5 m 3 s-1,corresponding to 11.7%-33.9%,14.2%-37.6%,12.4%-28.4% and 17.5%-30.2%,respectively of the annual average flow(AAF).These MIFRs can maintain good ecological function in a river according to the criterion furnished by the Tennant method.
文摘Clothing and textiles are very challenging to recycle due to the fact that they are nearly always a blend of fibres from different types of polymers.There are some promising early indications that new green solvents including CyreneTM and TMO as well as some simple ionic liquids can be used to aid recycling of complex fabrics by selective dissolution of one of the component polymers.A viable process for the future valorisation of many waste fabrics should be designed to maximise the creation of valuable product streams while also minimising any waste.
基金Financial support was provided by the US DOE under awards DE-EE0000272 and DE-FG30-08CC00057.
文摘Thermochemical biomass gasification,followedby conversion of the produced syngas to fuels andelectrical power,is a promising energy alternative.Realworldcharacterization of particulate matter(PM)and othercontaminants in the syngas is important to minimizedamage and ensure efficient operation of the engines itpowers and the fuels created from it.A dilution samplingsystem is demonstrated to quantify PM in syngas generatedfrom two gasification plants utilizing different biomassfeedstocks:a BioMax®15 Biopower System that uses rawand torrefied woodchips as feedstocks,and an integratedbiorefinery(IBR)that uses rice hulls and woodchips asfeedstocks.PM_(2.5)mass concentrations in syngas from theIBR downstream of the purification system were 12.8-13.7μg·m^(-3),which were significantly lower than themaximum level for catalyst protection(500μg·m^(-3))andwere 2-3 orders of magnitude lower than those inBioMax®15 syngas(2247-4835μg·m^(-3)).Ultrafine particlenumber concentration and PM_(2.5)chemical constituentswere also much lower in the IBR syngas than in theBioMax®15.The dilution sampling system enabledreliable measurements over a wide range of concentrations:the use of high sensitivity instruments allowed measurementat very low concentrations(~1μg·m^(-3)),while theflexibility of dilution minimized sampling problems thatare commonly encountered due to high levels of tars in rawsyngas(~1 g·m^(-3)).
文摘Asymmetric catalysis has been one of the most effective strategies for building up a chirality in the favored stereoisomer. Over the past decades, various sophisticated chiral ligands and catalysts have been well-designed, which enable great advances in enantioselective chemical transformations, for achieving excellent selectivity and activity.