Kinetic mechanisms describing how THIs (thermodynamic hydrate inhibitors) and KHIs (kinetic hydrate inhibitors) work on gas hydrate formation have drawn interests for decades. These mechanisms could be better reve...Kinetic mechanisms describing how THIs (thermodynamic hydrate inhibitors) and KHIs (kinetic hydrate inhibitors) work on gas hydrate formation have drawn interests for decades. These mechanisms could be better revealed with more fundamental experimental studies. With experiments performed in an isochoric cell with continuous cooling and stirring, this paper presents observed effects of methanol, PVP (polyvinylpyrrolidone, Mw= 15,000) and PVCap (polyvinylcaprolactam, Mw = 6,000) on both nucleation and growth of structure-I methane hydrate at concentrations 100 to 3,000 ppm (i.e., 0.01 to 0.3 wt%). The results suggest that methanol had no significant effect on nucleation, while it weakly promoted, spontaneous hydrate growth at an early stage. PVP and PVCap gave reduced average nucleation rate at and prior to hydrate onset, while increased the induction time and the degree of sub-cooling. PVP gave no observable effect on total gas intake and average hydrate growth rate. A decreased total gas intake was observed for all concentrations of PVCap.展开更多
文摘Kinetic mechanisms describing how THIs (thermodynamic hydrate inhibitors) and KHIs (kinetic hydrate inhibitors) work on gas hydrate formation have drawn interests for decades. These mechanisms could be better revealed with more fundamental experimental studies. With experiments performed in an isochoric cell with continuous cooling and stirring, this paper presents observed effects of methanol, PVP (polyvinylpyrrolidone, Mw= 15,000) and PVCap (polyvinylcaprolactam, Mw = 6,000) on both nucleation and growth of structure-I methane hydrate at concentrations 100 to 3,000 ppm (i.e., 0.01 to 0.3 wt%). The results suggest that methanol had no significant effect on nucleation, while it weakly promoted, spontaneous hydrate growth at an early stage. PVP and PVCap gave reduced average nucleation rate at and prior to hydrate onset, while increased the induction time and the degree of sub-cooling. PVP gave no observable effect on total gas intake and average hydrate growth rate. A decreased total gas intake was observed for all concentrations of PVCap.