To investigate the effect purification plays on nanoparticle (NP) synthesis and catalytic activity, three copies of Pd4 (TSNAVHPTLRHL) fused to the N-terminus of Green Fluorescent Protein (GFP) was produced recombinan...To investigate the effect purification plays on nanoparticle (NP) synthesis and catalytic activity, three copies of Pd4 (TSNAVHPTLRHL) fused to the N-terminus of Green Fluorescent Protein (GFP) was produced recombinantly and its characteristics pre and post purification was assessed. An E. coli expression system was employed, and purification was performed with Immobilized Metal Affinity Column (IMAC). Transmission electron microscopy (TEM) was utilized to examine the morphology of NPs synthesized with an enriched protein sample and ImageJ was used to determine the average size to be 2.44 nm. The turnover frequency of fabricated NP from the purified protein was analyzed by a model Suzuki-Miyaura coupling reactions and determined to be 33,000 hr<sup>-1</sup>. This value is three times higher than the turnover frequency when crude lysate containing (Pd4)<sub>3</sub>-GFP was used during NP synthesis. This result shows that enrichment enhanced the catalytic activity of NP.展开更多
文摘To investigate the effect purification plays on nanoparticle (NP) synthesis and catalytic activity, three copies of Pd4 (TSNAVHPTLRHL) fused to the N-terminus of Green Fluorescent Protein (GFP) was produced recombinantly and its characteristics pre and post purification was assessed. An E. coli expression system was employed, and purification was performed with Immobilized Metal Affinity Column (IMAC). Transmission electron microscopy (TEM) was utilized to examine the morphology of NPs synthesized with an enriched protein sample and ImageJ was used to determine the average size to be 2.44 nm. The turnover frequency of fabricated NP from the purified protein was analyzed by a model Suzuki-Miyaura coupling reactions and determined to be 33,000 hr<sup>-1</sup>. This value is three times higher than the turnover frequency when crude lysate containing (Pd4)<sub>3</sub>-GFP was used during NP synthesis. This result shows that enrichment enhanced the catalytic activity of NP.