The Upper Chao Phraya River Basin, Thailand, has been facing continuous groundwater level decreases due to over-extraction for irrigation. MAR (managed aquifer recharge) using infiltration pond was investigated and ...The Upper Chao Phraya River Basin, Thailand, has been facing continuous groundwater level decreases due to over-extraction for irrigation. MAR (managed aquifer recharge) using infiltration pond was investigated and constructed. A recharge experiment at the pilot site at Ban Nong Na, Phitsanulok Province, was conducted during 2009 to 2011 to mitigate the declining shallow groundwater level. The HELP3 and MODFLOW models were applied to explore the current groundwater recharge. The MODFLOW was used to simulate the recharge mechanism of the experiment in the 1,260 m2 infiltration pond during July to November, 2010. The simulated results showed the groundwater influx and outflux for the year 2010 were 1.34 Mm3 1.57 Mm3, respectively. The annual shallow groundwater extraction was 1.40 Mm3 resulting in the groundwater system deficit of 0.23 Mm3 and causing groundwater level decline at the rate of 0.25 m/yr. The critical zone with groundwater level deeper than 8 m from the ground surface covers 19% of the study area of 4.12 km2 and it would be increased up to 85% within the next 10 years (2020). To achieve the groundwater system balance, the deficit amount of 0.23 Mm3 is needed and six infiltration ponds are required.展开更多
文摘The Upper Chao Phraya River Basin, Thailand, has been facing continuous groundwater level decreases due to over-extraction for irrigation. MAR (managed aquifer recharge) using infiltration pond was investigated and constructed. A recharge experiment at the pilot site at Ban Nong Na, Phitsanulok Province, was conducted during 2009 to 2011 to mitigate the declining shallow groundwater level. The HELP3 and MODFLOW models were applied to explore the current groundwater recharge. The MODFLOW was used to simulate the recharge mechanism of the experiment in the 1,260 m2 infiltration pond during July to November, 2010. The simulated results showed the groundwater influx and outflux for the year 2010 were 1.34 Mm3 1.57 Mm3, respectively. The annual shallow groundwater extraction was 1.40 Mm3 resulting in the groundwater system deficit of 0.23 Mm3 and causing groundwater level decline at the rate of 0.25 m/yr. The critical zone with groundwater level deeper than 8 m from the ground surface covers 19% of the study area of 4.12 km2 and it would be increased up to 85% within the next 10 years (2020). To achieve the groundwater system balance, the deficit amount of 0.23 Mm3 is needed and six infiltration ponds are required.