期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
型材拉弯成形性评估专家系统 被引量:4
1
作者 高宏志 周贤宾 +2 位作者 李晓星 金朝海 B Criqui 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第11期1411-1416,共6页
型材拉弯成形性与材料性能、截面形式和尺寸以及工艺参数有关,拉弯成形性图可定量表示型材拉弯成形性与截面尺寸及工艺参数之间的关系.基于型材拉弯成形性图的概念,建立了型材拉弯专家系统;分析了系统的功能、结构以及实现模块,对系统... 型材拉弯成形性与材料性能、截面形式和尺寸以及工艺参数有关,拉弯成形性图可定量表示型材拉弯成形性与截面尺寸及工艺参数之间的关系.基于型材拉弯成形性图的概念,建立了型材拉弯专家系统;分析了系统的功能、结构以及实现模块,对系统的关键技术和解决方法进行了研究.该系统以数据库为基础,基于数据的推理和图形显示,采用面向对象的编程技术和模块化设计思想予以实现;并通过实例表明了系统的可靠性.该系统可满足企业在并行工程下质量控制的需要,为型材拉弯成形性图在工业中的推广应用、型材拉弯成形水平的提高以及型材拉弯工艺的广泛应用奠定了基础. 展开更多
关键词 型材 拉弯成形性 汽车制造 数据库 专家系统
下载PDF
Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images 被引量:4
2
作者 Zeliang Su Etienne Decencière +4 位作者 Tuan-Tu Nguyen Kaoutar El-Amiry Vincent De Andrade Alejandro A.Franco Arnaud Demortière 《npj Computational Materials》 SCIE EI CSCD 2022年第1期255-265,共11页
The segmentation of tomographic images of the battery electrode is a crucial processing step,which will have an additional impact on the results of material characterization and electrochemical simulation.However,manu... The segmentation of tomographic images of the battery electrode is a crucial processing step,which will have an additional impact on the results of material characterization and electrochemical simulation.However,manually labeling X-ray CT images(XCT)is time-consuming,and these XCT images are generally difficult to segment with histographical methods.We propose a deep learning approach with an asymmetrical depth encode-decoder convolutional neural network(CNN)for real-world battery material datasets.This network achieves high accuracy while requiring small amounts of labeled data and predicts a volume of billions voxel within few minutes.While applying supervised machine learning for segmenting real-world data,the ground truth is often absent.The results of segmentation are usually qualitatively justified by visual judgement.We try to unravel this fuzzy definition of segmentation quality by identifying the uncertainty due to the human bias diluted in the training data.Further CNN trainings using synthetic data show quantitative impact of such uncertainty on the determination of material’s properties.Nano-XCT datasets of various battery materials have been successfully segmented by training this neural network from scratch.We will also show that applying the transfer learning,which consists of reusing a well-trained network,can improve the accuracy of a similar dataset. 展开更多
关键词 NEURAL network BATTERY
原文传递
Self-supervised image quality assessment for X-ray tomographic images of Li-ion battery 被引量:1
3
作者 Kai Zhang Tuan-Tu Nguyen +1 位作者 Zeliang Su Arnaud Demortière 《npj Computational Materials》 SCIE EI CSCD 2022年第1期1848-1856,共9页
Image perception plays a fundamental role in the tomography-based approaches for microstructure characterization and has a deep impact on all subsequent stages of image processing,such as segmentation and 3D analysis.... Image perception plays a fundamental role in the tomography-based approaches for microstructure characterization and has a deep impact on all subsequent stages of image processing,such as segmentation and 3D analysis.The enhancement of image perception,however,frequently involves observer-dependence,which reflects user-to-user dispersion and uncertainties in the calculated parameters.This work presents an objective quantitative method,which uses convolutional neural networks (CNN) for the quality assessment of the X-ray tomographic images.With only dozens of annotations,our method allows to evaluate directly and precisely the quality of tomographic images.Different metrics were employed to evaluate the correlation between our predicted scores and subjective human annotations.The evaluation results demonstrate that our method can be a direct tool to guide the enhancement process in order to produce reliable segmentation results.The processing of the tomographic image can thus evolve into a robust observer-independent procedure and advance towards the development of an efficient self-supervised approach. 展开更多
关键词 IMAGE NETWORKS BATTERY
原文传递
The electrode tortuosity factor:why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead 被引量:1
4
作者 Tuan-Tu Nguyen Arnaud Demortière +3 位作者 Benoit Fleutot Bruno Delobel Charles Delacourt Samuel J.Cooper 《npj Computational Materials》 SCIE EI CSCD 2020年第1期633-644,共12页
The tortuosity factor of porous battery electrodes is an important parameter used to correlate electrode microstructure with performance through numerical modeling.Therefore,having an appropriate method for the accura... The tortuosity factor of porous battery electrodes is an important parameter used to correlate electrode microstructure with performance through numerical modeling.Therefore,having an appropriate method for the accurate determination of tortuosity factors is critical.This paper presents a numerical approach,based on simulations performed on numerically-generated microstructural images,which enables a comparison between two common experimental methods. 展开更多
关键词 methods ELECTRODE POROUS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部