期刊文献+
共找到88篇文章
< 1 2 5 >
每页显示 20 50 100
Deep eutectic solvents:Green multi-task agents for sustainable super green hydrogen technologies
1
作者 Raiyan Al-Farsi Maan Hayyan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期357-382,共26页
While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is curr... While reliance on renewable energy resources has become a reality, there is still a need to deploy greener and more sustainable methods in order to achieve sustainable development goals. Indeed, green hydrogen is currently believed to be a reliable solution for global warming and the pollution challenges arising from fossil fuels, making it the resilient fuel of the future. However, the sustainability of green hydrogen technologies is yet to be achieved. In this context, generation of green hydrogen with the aid of deep eutectic solvents(DESs) as green mixtures has been demonstrated as a promising research area. This systematic review article covers green hydrogen generation through water splitting and biomass fermentation when DESs are utilized within the generation process. It also discusses the incorporation of DESs in fuel cell technologies. DESs can play a variety of roles such as solvent, electrolyte, or precursor;colloidal suspension and reaction medium;galvanic replacement, shape-controlling, decoration, or extractive agent;finally oxidant. These roles are relevant to several methods of green hydrogen generation, including electrocatalysis, photocatalysis, and fermentation. As such, it is of utmost importance to screen potential DES formulations and determine how they can function in and contribute throughout the green hydrogen mobility stages. The realization of super green hydrogen generation stands out as a pivotal milestone in our journey towards achieving a more sustainable form of development;DESs have great potential in making this milestone achievable. Overall, incorporating DESs in hydrogen generation constitutes a promising research area and offers potential scalability for green hydrogen production, storage,transport, and utilization. 展开更多
关键词 Watersplitting BIOHYDROGEN Super green hydrogen ELECTROCATALYSIS PHOTOCATALYSIS Fuel cell Power-to-X
下载PDF
Experimental investigation into the salinity effect on the physicomechanical properties of carbonate saline soil
2
作者 Jiejie Shen Qing Wang +3 位作者 Yating Chen Xuefei Zhang Yan Han Yaowu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1883-1895,共13页
For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu... For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects. 展开更多
关键词 Carbonate saline soil Salt content Physicomechanical properties Bound water MICROSTRUCTURE
下载PDF
Ice-Induced Vibrational Response of Single-Pile Offshore Wind-Turbine Foundations
3
作者 Zhoujie Zhu Gang Wang +3 位作者 Qingquan Liu Guojun Wang Rui Dong Dayong Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期625-639,共15页
Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform... Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method. 展开更多
关键词 Wind turbine ice-induced vibration dynamic response equivalent embedded method
下载PDF
Interface engineering of p-n heterojunction for kesterite photovoltaics:A progress review 被引量:1
4
作者 Mingrui He Kaiwen Sun +2 位作者 Mahesh P.Suryawanshi Jianjun Li Xiaojing Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期1-8,共8页
Kesterite Cu_(2)ZnSn(S,Se)_4(CZTSSe)is considered one or the most promising thin-film photovoltaic(PV)technologies due to its bandgap tunability(1.0~1.5 eV)and high absorption coefficient(>10^(4)cm^(-1)).However,th... Kesterite Cu_(2)ZnSn(S,Se)_4(CZTSSe)is considered one or the most promising thin-film photovoltaic(PV)technologies due to its bandgap tunability(1.0~1.5 eV)and high absorption coefficient(>10^(4)cm^(-1)).However,the highest power conversion efficiency(PCE)of CZTSSe has so far only reached up to 12.6%,much lower than the theoretical limit defined by the Shockley-Queisser(SQ)theory.The large opencircuit voltage(V_(oc))deficit and inferior fill factor(FF)are prevalent in kesterite PV and hamper the improvement in efficiency.In this review,unfavourable energy band alignment at the CZTSSe/buffer junction,as well as defective interface are identified as two obstacles at the p-n heterojunction.These issues contribute to the interface induced recombination,thus significantly reducing efficiency.Subsequently,we review recent advances in strategies to improve the efficiency by altering the characteristics of the interface,covering alternative buffer layers,heterojunction treatments and passivation layers.Finally,future research directions of heterojunction engineering are proposed as schemes towards the ideal interface in kesterite solar cells. 展开更多
关键词 KESTERITE Thin film Solar cell HETEROJUNCTION INTERFACE
下载PDF
Over 12%efficient kesterite solar cell via back interface engineering 被引量:1
5
作者 Yunhai Zhao Zixuan Yu +8 位作者 Juguang Hu Zhuanghao Zheng Hongli Ma Kaiwen Sun Xiaojing Hao Guangxing Liang Ping Fan Xianghua Zhang Zhenghua Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期321-329,I0008,共10页
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)has attracted considerable attention as a non-toxic and earthabundant solar cell material.During selenization of CZTSSe film at high temperature,the reaction between CZTSSe and Mo... Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)has attracted considerable attention as a non-toxic and earthabundant solar cell material.During selenization of CZTSSe film at high temperature,the reaction between CZTSSe and Mo is one of the main reasons that result in unfavorable absorber and interface quality,which leads to large open circuit voltage deficit(VOC-def)and low fill factor(FF).Herein,a WO_(3)intermediate layer introduced at the back interface can effectually inhibit the unfavorable interface reaction between absorber and back electrode in the preliminary selenization progress;thus high-quality crystals are obtained.Through this back interface engineering,the traditional problems of phase segregation,voids in the absorber and over thick Mo(S,Se)_(2)at the back interface can be well solved,which greatly lessens the recombination in the bulk and at the interface.The increased minority carrier diffusion length,decreased barrier height at back interface contact and reduced deep acceptor defects give rise to systematic improvement in VOCand FF,finally a 12.66%conversion efficiency for CZTSSe solar cell has been achieved.This work provides a simple way to fabricate highly efficient solar cells and promotes a deeper understanding of the function of intermediate layer at back interface in kesterite-based solar cells. 展开更多
关键词 Cu_(2)ZnSn(S Se)_(4) WO_(3)intermediate layer Crystal growth Minority carrier diffusion length Interface contact quality
下载PDF
Energy and Cost Analysis of Processing Flat Plate Solar Collectors
6
作者 Mamdouh El Haj Assad Ali Khosravi +2 位作者 Mohammad AlShabi Bassam Khuwaileh Abdul-Kadir Hamid 《Energy Engineering》 EI 2021年第3期447-458,共12页
In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxi... In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission. 展开更多
关键词 Life cycle solar collector renewable energy solar thermal CO_(2)emission economic analysis
下载PDF
The Hydrogen Energy Potential of Solid Waste: A Case Study of Misrata City
7
作者 Moutaz Benali Tarek Hamad +1 位作者 Yousif Hamad Ahmad Belkhair 《Advances in Biological Chemistry》 2019年第2期45-53,共9页
This study presents an overview on solid waste that can be used as a source of bioenergy in Misrata including municipal solid waste (MSW), industrial solid waste (ISW), and healthcare solid waste (HSW) as biomass sour... This study presents an overview on solid waste that can be used as a source of bioenergy in Misrata including municipal solid waste (MSW), industrial solid waste (ISW), and healthcare solid waste (HSW) as biomass sources. The management of solid waste and valorization is based on an understanding of MSW’s and HSW’s composition and physicochemical characteristics. Of MSW’s, the results show that organic matter represents 59% of waste, followed by paper-cardboard 12%, miscellaneous 10%, plastic 8%, metals 7% and glass 4%. While HSW comprised of 72% general healthcare waste (non-risk) and 28% hazardous waste. The average general waste composition was: 38% organic, 24% plastics, and 20% paper. The potential of hydrogen energy produced from biogas in Misrata including MSW, and other organic feedstock such as food and kitchen waste, animal wastes, clover and reeds, wheat residues, barley residues, HSW and sewage waste as biomass sources. The total potential hydrogen output is estimated to be around 10,265 tons per year. 展开更多
关键词 HYDROGEN Solid WASTE WASTE to Energy BIOMASS SOURCES BIOENERGY
下载PDF
Reliability Analysis of Wind Energy Generation System Using Stochastic Method
8
作者 Godwin Diamenu Joseph Cudjoe Attachie Christian Kwaku Amuzuvi 《Journal of Power and Energy Engineering》 2022年第8期26-44,共19页
Operators of renewable energy systems (RESs) must always manage uncertainty to some extent to ensure the reliability and the security of the electric power supply source. The guiding principle in this regard is to ens... Operators of renewable energy systems (RESs) must always manage uncertainty to some extent to ensure the reliability and the security of the electric power supply source. The guiding principle in this regard is to ensure service reliability and quality by balancing load variations with the variable renewable energy (VRE) sources. If the power generated by these VRE sources is not properly managed in conjunction with the varying load, the power grid may fail to achieve the required balance. To ensure its reliable operation, reliability analysis is vital for wind energy generation system (WEGS). This paper evaluated and assessed the reliability of WEGS and a proposed varying load by first using a stochastic approach to model the WEGS and the proposed varying load after which power generation indices were used to evaluate and assess the performance of the model. The WEGS and the varying load were modelled separately after which the two were combined into one model. Full availability, partial availability, the expected energy not supplied (EENS) or loss of energy expectation (LOEE), the mean or average instantaneous electric power generation and mean instantaneous generation deficiency were the indices used for the evaluation of the WEGS. The results indicated that the electric power generation will meet the power demand during most of the transition states of the WEGS with the expectation that the variation in the load will not be at fast pace and in large quantum. 展开更多
关键词 Renewable Energy STOCHASTIC RELIABILITY AVAILABILITY Transition Rate Transition State
下载PDF
Erratum to:On the Downshift of Wave Frequency for Bragg Resonance[China Ocean Engineering,2022,36(1),76-85.https://doi.org/10.1007/s13344-022-0006-y]
9
作者 PENG Ji TAO Ai-feng +2 位作者 FAN Jun ZHENG Jin-hai LIU Yu-ming 《China Ocean Engineering》 SCIE EI CSCD 2022年第2期332-332,共1页
In the original publication of the article(Peng et al.2022),under the section‘Comparisons with experiments and direct numerical simulations’,Fig.4 was not included.The figure is given below:Reference Peng,J.,Tao.,A.... In the original publication of the article(Peng et al.2022),under the section‘Comparisons with experiments and direct numerical simulations’,Fig.4 was not included.The figure is given below:Reference Peng,J.,Tao.,A.F.,Fan,J.,Zheng,J.H.and Liu,Y.M.,2022.On the downshift of wave frequency for Bragg resonance,China Ocean Engineering,36(1),76-85. 展开更多
关键词 WAVE WAVE
下载PDF
Implementation of Spreadsheet Modeling to Compare the Annual Energy Performance and Cost of Microgeneration Systems
10
作者 Andrew Putrayudha Soesanto Evgueniy Entchev +1 位作者 Eun Chul Kang Euy Joon Lee 《Journal of Energy and Power Engineering》 2014年第5期826-835,共10页
关键词 发电系统 能耗成本 电子表格 发电性能 微型 建模 混合动力系统 Microsoft
下载PDF
Vegetable Oil-Based Nanolubricants in Machining:From Physicochemical Properties to Application 被引量:2
11
作者 Xiaotian Zhang Changhe Li +9 位作者 Zongming Zhou Bo Liu Yanbin Zhang Min Yang Teng Gao Mingzheng Liu Naiqing Zhang Zafar Said Shubham Sharma Hafiz Muhammad Ali 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期4-42,共39页
Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection ... Cutting fluid is crucial in ensuring surface quality and machining accuracy during machining.However,traditional mineral oil-based cutting fluids no longer meet modern machining’s health and environmental protection require-ments.As a renewable,pollution-free alternative with excellent processing characteristics,vegetable oil has become an inevitable replacement.However,vegetable oil lacks oxidation stability,extreme pressure,and antiwear proper-ties,which are essential for machining requirements.The physicochemical characteristics of vegetable oils and the improved methods’application mechanism are not fully understood.This study aims to investigate the effects of viscosity,surface tension,and molecular structure of vegetable oil on cooling and lubricating properties.The mechanisms of autoxidation and high-temperature oxidation based on the molecular structure of vegetable oil are also discussed.The study further investigates the application mechanism and performance of chemical modification and antioxidant additives.The study shows that the propionic ester of methyl hydroxy-oleate obtained by epoxidation has an initial oxidation temperature of 175℃.The application mechanism and extreme pressure performance of conventional extreme pressure additives and nanoparticle additives were also investigated to solve the problem of insufficient oxidation resistance and extreme pressure performance of nanobiological lubricants.Finally,the study discusses the future prospects of vegetable oil for chemical modification and nanoparticle addition.The study provides theoretical guidance and technical support for the industrial application and scientific research of vegetable oil in the field of lubrication and cooling.It is expected to promote sustainable development in the manufacturing industry. 展开更多
关键词 Cutting fluid Vegetable oil Chemical modification ANTIOXIDANT Extreme pressure additive Minimum quality lubrication
下载PDF
Flume Experiment Investigation on Propagation Characteristics of Tidal Bore in A Curved Channel
12
作者 FAN Jun TAO Ai-feng +2 位作者 SHI Mo-quan LI Ying PENG Ji 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期131-144,共14页
Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied fo... Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied for the generation mechanism, propagation features and influencing factors, the curved channel will complicate the characteristics of tidal bore propagation, which need further investigation compared with straight channel. In this study, the flume experiments for both undular and breaking bores’ propagation in curved channel are performed to measure the freesurface elevation and flow velocity by ultrasonic sensors and ADV respectively. The propagation characteristics,including tidal bore height, cross-section surface gradient, tidal bore propagation celerity, and flow velocity are obtained for both sides of the curved channel. And three bore intensities are set for each type of tidal bores. The freesurface gradients are consistently enlarged in high-curvature section for undular and breaking bores, but have distinct behaviors in low-curvature section. The spatial distributions of tidal bore propagation celerity and flow velocity are compared between concave and convex banks. This work will provide experimental reference for engineering design of beach and seawall protection, erosion reduction and siltation promotion in estuary areas with the existence of tidal bores. 展开更多
关键词 tidal bore curved channel flume experiment propagation celerity bore intensity
下载PDF
Evaluating effectiveness of multiple tuned mass dampers for vibration control of jacket offshore wind turbines under onshore and seafloor earthquakes
13
作者 Pan Zuxing Liu Yingzhou +4 位作者 Wang Wenhua Li Xin Zhao Shengxiao Jiang Zhenqiang Shang Jin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1045-1063,共19页
The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.I... The dynamic characteristics and structural responses of operation and grid loss offshore wind turbines(OWTs)under onshore and seafloor earthquakes are analyzed based on the established coupled seismic analysis model.In addition to the remarkable influence of the rotor system on the responses of the operation OWT under earthquakes,interactions among the natural modes of the grid loss OWT in the fore-aft and side-to-side directions are revealed.By comparing with the onshore earthquakes,the more significant differences of structural response are observed under the selected seafloor earthquakes,due to the longer duration and more abundant energy distribution around the natural frequencies of OWT.Concurrently,a multiple tuned mass damper(MTMD)is designed and applied to the operation and grid loss OWTs.Then,the comparisons of the mitigation effects under onshore and seafloor ground motions are carried out,and the necessity of applying seafloor ground motions to OWTs are proved.Moreover,in comparison to the operation OWT,more effective reductions are observed for the grid loss OWT under onshore and seafloor earthquakes using the designed MTMD.Therefore,the combined shutdown procedures and MTMD vibration control strategy is suggested for OWTs under earthquakes. 展开更多
关键词 offshore wind turbine EARTHQUAKE vibration control coupled analysis MTMD
下载PDF
GenAI4Sustainability:GPT and Its Potentials For Achieving UN’s Sustainable Development Goals
14
作者 Rui Wang Chaojie Li +2 位作者 Xiangyu Li Rong Deng Zhaoyang Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第12期2179-2182,共4页
SINCE 2015,17 Sustainable Development Goals(SDGs)have been understood as more promising blueprints for a peaceful,prosperous,and sustainable future[1]which are formulated to seek a framework to address global challeng... SINCE 2015,17 Sustainable Development Goals(SDGs)have been understood as more promising blueprints for a peaceful,prosperous,and sustainable future[1]which are formulated to seek a framework to address global challenging issues such as poverty,inequality,and pollution. 展开更多
关键词 INEQUALITY POLLUTION formulated
下载PDF
利用Cu_2SnS_3纳米晶和Zn离子混合溶液制备Cu_2ZnSnS_4薄膜(英文)
15
作者 童正夫 杨佳 +6 位作者 颜畅 郝萌萌 刘芳洋 蒋良兴 赖延清 李劼 刘业翔 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2102-2108,共7页
在非真空条件下,选用无毒原材料,采用溶液法制备Cu_2ZnSnS_4薄膜。利用透射电镜、X射线衍射、扫描电镜、能谱以及拉曼等研究手段,对Cu_2ZnSnS_4薄膜的形成机理进行分析。通过循环伏安及光电测试,探讨Cu_2ZnSnS_4薄膜作为染料敏化太阳能... 在非真空条件下,选用无毒原材料,采用溶液法制备Cu_2ZnSnS_4薄膜。利用透射电镜、X射线衍射、扫描电镜、能谱以及拉曼等研究手段,对Cu_2ZnSnS_4薄膜的形成机理进行分析。通过循环伏安及光电测试,探讨Cu_2ZnSnS_4薄膜作为染料敏化太阳能电池对电极的催化性能。结果表明:采用溶液法制备的Cu_2ZnSnS_4混合前驱体溶液主要由Cu2SnS 3纳米晶和Zn离子组成,将其滴涂成膜后,经过550°C退火,最终可以得到Cu_2ZnSnS_4薄膜;制备的Cu_2ZnSnS_4薄膜对氧化还原对I-3/I-具有一定的催化作用,将其应用于染料敏化太阳能电池的对电极取得了1.09%的光电转化效率。 展开更多
关键词 Cu2ZnSnS4薄膜 Cu2SnS3纳米晶 Zn离子 电催化 染料敏化太阳能电池
下载PDF
Experimental investigation of enhancement of carbon dioxide foam stability, pore plugging, and oil recovery in the presence of silica nanoparticles 被引量:4
16
作者 Abdul Rahim Risal Muhammad A.Manan +3 位作者 Nurudeen Yekeen Nur Bashirah Azli Ali Mohamed Samin Xin Kun Tan 《Petroleum Science》 SCIE CAS CSCD 2019年第2期344-356,共13页
The influence of surface-modified silica(SiO_2) nanoparticles on the stability and pore plugging properties of foams in porous media was investigated in this study. The pore plugging ability of foams was estimated fro... The influence of surface-modified silica(SiO_2) nanoparticles on the stability and pore plugging properties of foams in porous media was investigated in this study. The pore plugging ability of foams was estimated from the pressure drop induced during foam propagation in porous media. The results clearly showed that the modified Si02 nanoparticlestabilized foam exhibited high stability, and the differential pressure increased in porous media by as much as three times.The addition of SiO_2 nanoparticles to the foaming dispersions further mitigated the adverse effect of oil toward the foam pore plugging ability. Consequently, the oil recovery increased in the presence of nanoparticles by approximately 15%during the enhanced oil recovery experiment. The study suggested that the addition of surface-modified silica nanoparticles to the surfactant solution could considerably improve the conventional foam stability and pore plugging performance in porous media. 展开更多
关键词 Foam PORE plugging Surface-modified NANOPARTICLE Enhanced oil RECOVERY
下载PDF
Study on integrated development and hybrid operation mode of nuclear power plant and pumped-storage power station 被引量:6
17
作者 Haizheng Wang Caide Peng 《Global Energy Interconnection》 2019年第4期336-341,共6页
The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode... The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed. 展开更多
关键词 NUCLEAR POWER PLANT Pumped-storage POWER STATION Integrated development HYBRID operation MODES
下载PDF
High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage 被引量:5
18
作者 Liubing Dong Wang Yang +7 位作者 Wu Yang Chengyin Wang Yang Li Chengjun Xu Shuwei Wan Fengrong He Feiyu Kang Guoxiu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期650-658,共9页
Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life ... Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life Zn2+storage based on a pseudocapacitive storage mechanism.In the RuO2·H2O||Zn zinc-ion hybrid capacitors with Zn(CF3SO3)2 aqueous electrolyte,the RuO2·H2O cathode can reversibly store Zn2+in a voltage window of 0.4-1.6 V(vs.Zn/Zn2+),delivering a high discharge capacity of 122 mAh g?1.In particular,the zinc-ion hybrid capacitors can be rapidly charged/discharged within 36 s with a very high power density of 16.74 kW kg?1 and a high energy density of 82 Wh kg?1.Besides,the zinc-ion hybrid capacitors demonstrate an ultralong cycle life(over 10,000 charge/discharge cycles).The kinetic analysis elucidates that the ultrafast Zn2+storage in the RuO2·H2O cathode originates from redox pseudocapacitive reactions.This work could greatly facilitate the development of high-power and safe electrochemical energy storage. 展开更多
关键词 Zinc-ion hybrid capacitor HYDROUS ruthenium oxide Ultralong LIFE Redox PSEUDOCAPACITANCE High power
下载PDF
Economic feasibility of large-scale hydro–solar hybrid power including long distance transmission 被引量:6
19
作者 Zhenchen Deng Jinyu Xiao +3 位作者 Shikun Zhang Yuetao Xie Yue Rong Yuanbing Zhou 《Global Energy Interconnection》 2019年第4期290-299,共10页
Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that c... Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that can be bundled with solar PV to improve the economic feasibility of long-distance transmitted power. In this paper, a quantification model is established taking into account the regulating capacity of the reservoir, the characteristics of solar generation, and cost of hydro and solar PV with long-distance transmission based on the installed capacity ratio of hydro–solar hybrid power. Results indicate that for hydropower stations with high regulating capacity and generation factor of approximately 0.5, a hydro–solar installed capacity ratio of 1:1 will yield overall optimal economic performance, whereas for hydropower stations with daily regulating capacity reservoir and capacity factor of approximately 0.65, the optimal hydro–solar installed capacity ratio is approximately 1:0.3. In addition, the accuracy of the approach used in this study is verified through operation simulation of a hydro–solar hybrid system including ultra high-voltage direct current(UHVDC) transmission using two case studies in Africa. 展开更多
关键词 HYDROPOWER SOLAR POWER Multi-energy HYBRID system Economic analysis UHVDC transmission Hydro–solar HYBRID POWER
下载PDF
Recent advances in high slope reinforcement in China: Case studies 被引量:5
20
作者 Zuyu Chen Zhen Wang +4 位作者 Hao Xi Zeyan Yang Lichun Zou Zhong Zhou Chuangbing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期775-788,共14页
This paper reviews a number of engineering technologies and workmanships for addressing the challenging issues concerning possible landslides in large-scale slope reinforcement projects in China.It includes:(1) the mu... This paper reviews a number of engineering technologies and workmanships for addressing the challenging issues concerning possible landslides in large-scale slope reinforcement projects in China.It includes:(1) the multi-point anchored piles with a depth of 64 m in the Jietai Temple rehabilitation project,(2) soil nailing strengthened by driven pipe grouting technique covering an area of530 m × 100 m(length × height) in the Xiluodu hydropower project,(3) the cantilever piles extending vertically from the slope toe to stabilize a 300 m high slope at the Xiaowan hydropower station,(4) a new and simple workmanship for building a pile with cross-sectional area of 20 m × 5 m in the Hongjiadu hydropower station,and(5) comprehensive reinforcement scheme proposed for excavation of a 530 m high slope in Jinping I hydropower station.These new technologies can provide valuable experiences for reinforcement of high slopes of similar projects in China and other regions and countries with similar geological conditions. 展开更多
关键词 Slope engineering Stabilizing pile Soil nail Shear resistance structure
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部