This paper has solved the Chester modified heat conduction equation of the different relaxation time r value under different temperature conditions, different boundary conditions and the different initial conditions b...This paper has solved the Chester modified heat conduction equation of the different relaxation time r value under different temperature conditions, different boundary conditions and the different initial conditions by different means of methods. These solutions can help to obtain temperature field of laser thermal effects.展开更多
The Fourier equation of heat conduction predicts a paradox that the effect of a thermal impulse (e.g. the thermal effect in pulse laser) in an infinite medium; i.e., a thermal impulse is propagated in an infinite velo...The Fourier equation of heat conduction predicts a paradox that the effect of a thermal impulse (e.g. the thermal effect in pulse laser) in an infinite medium; i.e., a thermal impulse is propagated in an infinite velocity. In order to solve the thermal transport paradox, C. W. Ulbrich and M. Chester have proposed the modification heat conduction equation respectively from different macroscopic viewpoint. This paper derived the modification heat conduction equation according to phonon model and quantum mechanics from microscopic viewpoint.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.60068001)and the Natural Science Foundation of Yunnan Province(No.2000A0021M)and ESF of Yunnan(No.0111054).
文摘This paper has solved the Chester modified heat conduction equation of the different relaxation time r value under different temperature conditions, different boundary conditions and the different initial conditions by different means of methods. These solutions can help to obtain temperature field of laser thermal effects.
基金This work was supported by the National Natural Science Foundation of China (No. 60068001)the Natural Science Foundation of Yunnan Province (No. 2000A0021M)ESF of Yunnan (No. 0111054).
文摘The Fourier equation of heat conduction predicts a paradox that the effect of a thermal impulse (e.g. the thermal effect in pulse laser) in an infinite medium; i.e., a thermal impulse is propagated in an infinite velocity. In order to solve the thermal transport paradox, C. W. Ulbrich and M. Chester have proposed the modification heat conduction equation respectively from different macroscopic viewpoint. This paper derived the modification heat conduction equation according to phonon model and quantum mechanics from microscopic viewpoint.