Cherts in the Zhongba melange of the western Yarlung Zangbo Suture Zone(YZSZ) contain well preserved radiolarian assemblages. These radiolarian assemblages indicate that the Zhongba melange has middle Jurassic-early C...Cherts in the Zhongba melange of the western Yarlung Zangbo Suture Zone(YZSZ) contain well preserved radiolarian assemblages. These radiolarian assemblages indicate that the Zhongba melange has middle Jurassic-early Cretaceous remnant, are coeval with those from the central and eastern parts of the YZSZ. Cherts from the Najiu area yield Aalenian to Aptian radiolarians, while cherts interbedded with siliceous mudstones from the Bielongjiala area yield Aptian radiolarians, indicating that terrigenousderived sediments were deposited during early Aptian. The above observations indicate that the entire YZSZ have a similar geochronological framework and thus they underwent similar geological evolution:(1) during the Jurassic, the Neo-Tethys was a wide ocean with pelagic sediments distal from continents;(2) during the Cretaceous(around 130-120 Ma), the Neo-Tethys started to subduct along the southern margin of the Lhasa block, and terrigenous-derived siliceous mudstone began deposition.展开更多
The tectonic event during Cretaceous and its relationship with hydrocarbon accumulation in the Qiangtang Basin is discussed based on zircon U-Pb dating and the study of deformation, thermochronology and hydrocarbon fo...The tectonic event during Cretaceous and its relationship with hydrocarbon accumulation in the Qiangtang Basin is discussed based on zircon U-Pb dating and the study of deformation, thermochronology and hydrocarbon formation. LA-ICPMS zircon U-Pb dating indicates that the tectonic event took place during the Early-Late Cretaceous (125-75Ma). The event not only established the framework and the styles of structural traps in the basin, but also led to the cessation of the first hydrocarbon formation and the destruction of previous oil pools. The light crude oil in the basin was formed during the second hydrocarbon formation stage in the Cenozoic, and ancient structural traps formed during the Cretaceous event are promising targets for oil and gas exploration.展开更多
Whether the Altyn Tagh fault (ATF) had been extended beyond its current northeastern tip and linked with strike-slip faults in East Asia is a key to understanding the timing and mechanisms of crustal deformation in th...Whether the Altyn Tagh fault (ATF) had been extended beyond its current northeastern tip and linked with strike-slip faults in East Asia is a key to understanding the timing and mechanisms of crustal deformation in the northern Tibetan Plateau. We present Late Cretaceous dextral movement affected by Okhotomorsk Block-East Asia collision and a larger sinistral offset since Late Eocene along the ATF based on the provenance analysis of western Jiuxi Basin. Moreover, currently available estimates of offset based on displaced Paleozoic and Jurassic rocks could not represent the maximum offset due to late Cretaceous dextral offset.展开更多
One of the new directions in the field of Cretaceous research is to elucidate the mechanism of the sedimentary transition from the Cretaceous black shales to oceanic red beds. A chemical sequential extraction method w...One of the new directions in the field of Cretaceous research is to elucidate the mechanism of the sedimentary transition from the Cretaceous black shales to oceanic red beds. A chemical sequential extraction method was applied to these two types of rocks from southern Tibet to investigate the burial records of reactive iron. Results indicate that carbonate-associated iron and pyrite are relatively enriched in the black shales, but depleted or absent in red beds. The main feature of the reactive iron in the red beds is relative enrichment of iron oxides (largely hematite), which occurred during syn-depostion or early diagenesis. The ratio between iron oxides and the total iron indicates an oxygen-enriched environment for red bed deposition. A comparison between the reactive iron burial records and proxies of paleo-productivity suggests that paleo-productivity decreases when the ratio between iron oxides and the total iron increases in the red beds. This phenomenon could imply that the relationship between marine redox and productivity might be one of the reasons for the sedimentary transition from Cretaceous black shale to oceanic red bed deposition.展开更多
The mechanism of sedimentary transition from the Cretaceous black shales to the oceanic red beds is a new and important direction of Cretaceous research. Chemical sequential extraction is applied to study the burial r...The mechanism of sedimentary transition from the Cretaceous black shales to the oceanic red beds is a new and important direction of Cretaceous research. Chemical sequential extraction is applied to study the burial records of reactive phosphorus in the black shale of the Gyabula Formation and oceanic red beds of the Chuangde Formation, Southern Tibet. Results indicate that the principal reactive phosphorus species is the authigenic and carbonate-associated phosphorus (CAP) in the Gyabula Formation and iron oxides-associated phosphorus (FeP) in the Chuangde Formation which accounts for more than half of their own total phosphorus content. While the authigenic and carbonate-associated phosphorus (CAP) is almost equal in the two Formations; the iron oxidesassociated phosphorus is about 1.6 times higher in the Chuangde Formation than that in the Gyabula Formation resulting in a higher content of the total phosphorus in the Chuangde Formation. According to the observations on the marine phosphorus cyde in Modern Ocean, it is found that preferential burial and regeneration of reactive phosphorus corresponds to highly oxic and reducing conditions, respectively, leading to the different distribution of phosphorus in these two distinct type of marine sediments. It is the redox-sensitive behavior of phosphorus cycle to the different redox conditions in the ocean and the controlling effects of phosphorus to the marine production that stimulate the local sedimentary transition from the Cretaceous black shale to the oceanic red beds.展开更多
Cretaceous oceanic red beds (CORBs) represented by red shales and marls, were deposited during the Cretaceous and early Paleocene, predominantly in the Tethyan realm, in lower slope and abyssal basin environments. D...Cretaceous oceanic red beds (CORBs) represented by red shales and marls, were deposited during the Cretaceous and early Paleocene, predominantly in the Tethyan realm, in lower slope and abyssal basin environments. Detailed studies of CORBs are rare; therefore, we compiled CORBs data from deep sea ocean drilling cores and outcrops of Cretaceous rocks subaerially exposed in southern Europe, northwestern Germany, Asia and New Zealand. In the Tethyan realm, CORBs mainly consist of reddish or pink shales, limestones and marlstones. By contrast, marlstones and chalks are rare in deep-ocean drilling cores. Upper Cretaceous marine sediments in cores from the Atlantic Ocean are predominantly various shades of brown, reddish brown, yellowish brown and pale brown in color. A few red, pink, yellow and orange Cretaceous sediments are also present. The commonest age of CORBs is early Campanian to Maastrichtian, with the onset mostly of oxic deposition often after Oceanic Anoxic Events (OAEs), during the early Aptian, late Albian-early Turonian and Campanian. This suggests an indicated and previously not recognized relationship between OAEs, black shales deposition and CORBs. CORBs even though globally distributed, are most common in the North Atlantic and Tethyan realms, in low to mid latitudes of the northern hemisphere; in the South Atlantic and Indian Ocean in the mid to high latitudes of the southern hemisphere; and are less frequent in the central Pacific Ocean. Their widespread occurrence during the late Cretaceous might have been the result of establishing a connection for deep oceanic current circulation between the Pacific and the evolving connection between South and North Atlantic and changes in oceanic basins ventilation.展开更多
The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crysta...The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crystalline Complex (GHC) above the MCT, and the Tethyan Himalayan Sequence (THS) juxtaposed by the South Tibet Detachment fault (STD) over the GHC. Due to widespread meta-morphism and intense deformation, differentiating the above three lithologic units is often difficult. This problem has been overcome by the use of Sm-Nd isotopic analysis. The previous studies suggested that the LHS can be clearly distinguished from the GHC and THS by their Nd isotope compositions. However, the lack of detailed and systematic Sm-Nd isotopic studies of the THS across the Himalaya in general has made differentiation of this unit from the nearby GHC impossible, as the two appear to share overlapping Nd compositions and model ages. To address this problem, we systematically sam-pled and analyzed Nd isotopes of the THS in southeastern Tibet directly north of Bhutan. Our study identifies two distinctive fields in a εNd -TDM plot. The first is defined by the εNd(210 Ma) values of -3.45 to -7.34 and TDM values of 1.15 to 1.29 Ga from a Late Triassic turbidite sequence, which are broadly similar to those obtained from the Lhasa block. The second field is derived from the Early Cretaceous meta-sedimentary rocks with εNd(130 Ma) values from -15.24 to -16.61 and TDM values from 1.63 to 2.00 Ga; these values are similar to those obtained from the Greater Himalayan Crystalline Complex in Bhutan directly south of our sampling traverse, which has εNd(130 Ma) values of -10.89 to -16.32 and Nd model ages (TDM) of 1.73 to 2.20 Ga. From the above observations, we suggest that the Late Triassic strata of the southeast Tibetan THS were derived from the Lhasa block in the north, while the Early Cretaceous strata of the THS were derived from a source similar to the High Himalayan Crystalline Complex or Indian craton in the south. Our interpretation is consistent with the existing palaeocurrent data and provenance analysis of the Late Triassic strata in southeastern Tibet, which indicate the sediments derived from a northern source. Thus, we suggest that the Lhasa terrane and the Indian craton were close to one another in the Late Triassic and were separated by a rift valley across which a large submarine fan was transported southward and deposited on the future northern margin of the Indian continent.展开更多
Quantitative analysis of Early Eocene radiolarian assemblages discovered in the sedimentary mélange (accretionary prism) of the Saga area,southern Tibet provides new information to constrain the timing of Tethys ...Quantitative analysis of Early Eocene radiolarian assemblages discovered in the sedimentary mélange (accretionary prism) of the Saga area,southern Tibet provides new information to constrain the timing of Tethys closure and the initial collision of India and Eurasia. The radiolarian species of Saga include Amphisphaera coronata (Ehrenberg),Buryella hannae Bak & Barwicz-Piskorz,Buryella clinata Foreman,Buryella tetradica Foreman,Calocycloma ampulla (Ehrenberg),Lamptonium fabaeforme constrictum Riedel and Sanfilippo,Lamptonium pennatum Foreman,Lithomespilus coronatus Squinabol and Lamptonium (?) colymbus Foreman. The adequate and reliable correlation of these radiolarians specimens indicates that the assemblage is of Early Eocene in age. The age and depositional envi-ronment of these radiolarians testify that deep ocean basins existed between India Plate and Asia Plate during the Early Eocene. The complete closure of Tethys must have taken place at least after the Early Eocene.展开更多
The Tanggula (唐古拉) thrust system and the Tuotuohe (沱沱河) foreland basin, which represent major Cenozoic tectonic units of the central Tibetan plateau, have been recently studied. Field investigation, analyse...The Tanggula (唐古拉) thrust system and the Tuotuohe (沱沱河) foreland basin, which represent major Cenozoic tectonic units of the central Tibetan plateau, have been recently studied. Field investigation, analyses of deformation and construction of two restored balanced structural sections suggest 75-100 km (51%-64%) of N-S shortening in the Tanggula thrust system and 55-114 km (42%-47%) of N-S shortening in the Tuotuohe basin. The shortening ratios indicate that the Tanggula- Tuotuohe area has undergone intensive deformation and crustal shortening during the Early Tertiary, resulting not only in crustal thickening, but also in large scale volcanism and in rapid uplift of the Tanggula Mountains.展开更多
基金supported by the Research Center for Tibetan Plateau Geology, China Geological Survey(201401)Funds for the Central Universities (Grant No. 292016004)China Geological Survey(Grant Nos. 12112011086037 and 1212011221072)
文摘Cherts in the Zhongba melange of the western Yarlung Zangbo Suture Zone(YZSZ) contain well preserved radiolarian assemblages. These radiolarian assemblages indicate that the Zhongba melange has middle Jurassic-early Cretaceous remnant, are coeval with those from the central and eastern parts of the YZSZ. Cherts from the Najiu area yield Aalenian to Aptian radiolarians, while cherts interbedded with siliceous mudstones from the Bielongjiala area yield Aptian radiolarians, indicating that terrigenousderived sediments were deposited during early Aptian. The above observations indicate that the entire YZSZ have a similar geochronological framework and thus they underwent similar geological evolution:(1) during the Jurassic, the Neo-Tethys was a wide ocean with pelagic sediments distal from continents;(2) during the Cretaceous(around 130-120 Ma), the Neo-Tethys started to subduct along the southern margin of the Lhasa block, and terrigenous-derived siliceous mudstone began deposition.
基金supported by the National Natural Science Foundation of China (40672086)the Ministry of Science and Technology "973" Project (2006CB701400)the Ministry of Land and Resources (XQ2004-06)
文摘The tectonic event during Cretaceous and its relationship with hydrocarbon accumulation in the Qiangtang Basin is discussed based on zircon U-Pb dating and the study of deformation, thermochronology and hydrocarbon formation. LA-ICPMS zircon U-Pb dating indicates that the tectonic event took place during the Early-Late Cretaceous (125-75Ma). The event not only established the framework and the styles of structural traps in the basin, but also led to the cessation of the first hydrocarbon formation and the destruction of previous oil pools. The light crude oil in the basin was formed during the second hydrocarbon formation stage in the Cenozoic, and ancient structural traps formed during the Cretaceous event are promising targets for oil and gas exploration.
文摘Whether the Altyn Tagh fault (ATF) had been extended beyond its current northeastern tip and linked with strike-slip faults in East Asia is a key to understanding the timing and mechanisms of crustal deformation in the northern Tibetan Plateau. We present Late Cretaceous dextral movement affected by Okhotomorsk Block-East Asia collision and a larger sinistral offset since Late Eocene along the ATF based on the provenance analysis of western Jiuxi Basin. Moreover, currently available estimates of offset based on displaced Paleozoic and Jurassic rocks could not represent the maximum offset due to late Cretaceous dextral offset.
基金This work is supported by the National Key Basic Research Program (2006CB701406);Natural Science Foundation of China for Youth (40403003) ;Key Project of the Natural Science Foundation of China (40332020), and is a contribution to IGCP 463.
文摘One of the new directions in the field of Cretaceous research is to elucidate the mechanism of the sedimentary transition from the Cretaceous black shales to oceanic red beds. A chemical sequential extraction method was applied to these two types of rocks from southern Tibet to investigate the burial records of reactive iron. Results indicate that carbonate-associated iron and pyrite are relatively enriched in the black shales, but depleted or absent in red beds. The main feature of the reactive iron in the red beds is relative enrichment of iron oxides (largely hematite), which occurred during syn-depostion or early diagenesis. The ratio between iron oxides and the total iron indicates an oxygen-enriched environment for red bed deposition. A comparison between the reactive iron burial records and proxies of paleo-productivity suggests that paleo-productivity decreases when the ratio between iron oxides and the total iron increases in the red beds. This phenomenon could imply that the relationship between marine redox and productivity might be one of the reasons for the sedimentary transition from Cretaceous black shale to oceanic red bed deposition.
基金supported by the Natural Science Foundation of China for Youth(40403003)National Key Basic Research Program(2006CB701406)Key Project of Natural Science Foundation of China(40332020),and is a contribution to IGCP 463/555.
文摘The mechanism of sedimentary transition from the Cretaceous black shales to the oceanic red beds is a new and important direction of Cretaceous research. Chemical sequential extraction is applied to study the burial records of reactive phosphorus in the black shale of the Gyabula Formation and oceanic red beds of the Chuangde Formation, Southern Tibet. Results indicate that the principal reactive phosphorus species is the authigenic and carbonate-associated phosphorus (CAP) in the Gyabula Formation and iron oxides-associated phosphorus (FeP) in the Chuangde Formation which accounts for more than half of their own total phosphorus content. While the authigenic and carbonate-associated phosphorus (CAP) is almost equal in the two Formations; the iron oxidesassociated phosphorus is about 1.6 times higher in the Chuangde Formation than that in the Gyabula Formation resulting in a higher content of the total phosphorus in the Chuangde Formation. According to the observations on the marine phosphorus cyde in Modern Ocean, it is found that preferential burial and regeneration of reactive phosphorus corresponds to highly oxic and reducing conditions, respectively, leading to the different distribution of phosphorus in these two distinct type of marine sediments. It is the redox-sensitive behavior of phosphorus cycle to the different redox conditions in the ocean and the controlling effects of phosphorus to the marine production that stimulate the local sedimentary transition from the Cretaceous black shale to the oceanic red beds.
基金part of the research programs supported by the specialty Program of the National Basic Research Program of China(Grant No.2006CB701402)the National Science Foundation of China(Grant No.40332020).
文摘Cretaceous oceanic red beds (CORBs) represented by red shales and marls, were deposited during the Cretaceous and early Paleocene, predominantly in the Tethyan realm, in lower slope and abyssal basin environments. Detailed studies of CORBs are rare; therefore, we compiled CORBs data from deep sea ocean drilling cores and outcrops of Cretaceous rocks subaerially exposed in southern Europe, northwestern Germany, Asia and New Zealand. In the Tethyan realm, CORBs mainly consist of reddish or pink shales, limestones and marlstones. By contrast, marlstones and chalks are rare in deep-ocean drilling cores. Upper Cretaceous marine sediments in cores from the Atlantic Ocean are predominantly various shades of brown, reddish brown, yellowish brown and pale brown in color. A few red, pink, yellow and orange Cretaceous sediments are also present. The commonest age of CORBs is early Campanian to Maastrichtian, with the onset mostly of oxic deposition often after Oceanic Anoxic Events (OAEs), during the early Aptian, late Albian-early Turonian and Campanian. This suggests an indicated and previously not recognized relationship between OAEs, black shales deposition and CORBs. CORBs even though globally distributed, are most common in the North Atlantic and Tethyan realms, in low to mid latitudes of the northern hemisphere; in the South Atlantic and Indian Ocean in the mid to high latitudes of the southern hemisphere; and are less frequent in the central Pacific Ocean. Their widespread occurrence during the late Cretaceous might have been the result of establishing a connection for deep oceanic current circulation between the Pacific and the evolving connection between South and North Atlantic and changes in oceanic basins ventilation.
基金China University of Geosciences (Beijing)a Changjiang Fellowship from the Chinese Ministry of Education awarded to Yin An
文摘The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crystalline Complex (GHC) above the MCT, and the Tethyan Himalayan Sequence (THS) juxtaposed by the South Tibet Detachment fault (STD) over the GHC. Due to widespread meta-morphism and intense deformation, differentiating the above three lithologic units is often difficult. This problem has been overcome by the use of Sm-Nd isotopic analysis. The previous studies suggested that the LHS can be clearly distinguished from the GHC and THS by their Nd isotope compositions. However, the lack of detailed and systematic Sm-Nd isotopic studies of the THS across the Himalaya in general has made differentiation of this unit from the nearby GHC impossible, as the two appear to share overlapping Nd compositions and model ages. To address this problem, we systematically sam-pled and analyzed Nd isotopes of the THS in southeastern Tibet directly north of Bhutan. Our study identifies two distinctive fields in a εNd -TDM plot. The first is defined by the εNd(210 Ma) values of -3.45 to -7.34 and TDM values of 1.15 to 1.29 Ga from a Late Triassic turbidite sequence, which are broadly similar to those obtained from the Lhasa block. The second field is derived from the Early Cretaceous meta-sedimentary rocks with εNd(130 Ma) values from -15.24 to -16.61 and TDM values from 1.63 to 2.00 Ga; these values are similar to those obtained from the Greater Himalayan Crystalline Complex in Bhutan directly south of our sampling traverse, which has εNd(130 Ma) values of -10.89 to -16.32 and Nd model ages (TDM) of 1.73 to 2.20 Ga. From the above observations, we suggest that the Late Triassic strata of the southeast Tibetan THS were derived from the Lhasa block in the north, while the Early Cretaceous strata of the THS were derived from a source similar to the High Himalayan Crystalline Complex or Indian craton in the south. Our interpretation is consistent with the existing palaeocurrent data and provenance analysis of the Late Triassic strata in southeastern Tibet, which indicate the sediments derived from a northern source. Thus, we suggest that the Lhasa terrane and the Indian craton were close to one another in the Late Triassic and were separated by a rift valley across which a large submarine fan was transported southward and deposited on the future northern margin of the Indian continent.
基金the National Natural Science Foundation of China (Grant No.40672086)the National Key Basic Research Program of China (Grant No.2006CB701400)
文摘Quantitative analysis of Early Eocene radiolarian assemblages discovered in the sedimentary mélange (accretionary prism) of the Saga area,southern Tibet provides new information to constrain the timing of Tethys closure and the initial collision of India and Eurasia. The radiolarian species of Saga include Amphisphaera coronata (Ehrenberg),Buryella hannae Bak & Barwicz-Piskorz,Buryella clinata Foreman,Buryella tetradica Foreman,Calocycloma ampulla (Ehrenberg),Lamptonium fabaeforme constrictum Riedel and Sanfilippo,Lamptonium pennatum Foreman,Lithomespilus coronatus Squinabol and Lamptonium (?) colymbus Foreman. The adequate and reliable correlation of these radiolarians specimens indicates that the assemblage is of Early Eocene in age. The age and depositional envi-ronment of these radiolarians testify that deep ocean basins existed between India Plate and Asia Plate during the Early Eocene. The complete closure of Tethys must have taken place at least after the Early Eocene.
基金supported by the National Natural Science Foundation of China (No. 40672086)the Ministry of Science and Technology of China (No. 2006CB701400)
文摘The Tanggula (唐古拉) thrust system and the Tuotuohe (沱沱河) foreland basin, which represent major Cenozoic tectonic units of the central Tibetan plateau, have been recently studied. Field investigation, analyses of deformation and construction of two restored balanced structural sections suggest 75-100 km (51%-64%) of N-S shortening in the Tanggula thrust system and 55-114 km (42%-47%) of N-S shortening in the Tuotuohe basin. The shortening ratios indicate that the Tanggula- Tuotuohe area has undergone intensive deformation and crustal shortening during the Early Tertiary, resulting not only in crustal thickening, but also in large scale volcanism and in rapid uplift of the Tanggula Mountains.