To investigate genetic mechanisms of high altitude adaptations of native mammals on the Tibetan Plateau, we compared mitochondrial sequences of the endangered Pantholops hodgsonii with its lowland distant relatives Ov...To investigate genetic mechanisms of high altitude adaptations of native mammals on the Tibetan Plateau, we compared mitochondrial sequences of the endangered Pantholops hodgsonii with its lowland distant relatives Ovis ames and Capra hircus, as well as other mammals. The complete mitochondrial genome of P. hodgsonii (16,498 bp) revealed a similar gene order as of other mammals. Because of tandem duplications, the control region of P. hodgsonii mitochondrial genome is shorter than those of O. ames and C. hircus, but longer than those of Bos species. Phylogenetic analysis based on alignments of the entire cytochrome b genes suggested that P. hodgsonii is more closely related to O. ames and C. hircus, rather than to species of the Antilopinae subfamily. The estimated divergence time between P. hodgsonii and O. ames is about 2.25 million years ago. Eutther analysis on natural selection indicated that the COXI (cytochrome c oxidase subunit I) gene was under positive selection in P. hodgsonii and Bos grunniens. Considering the same climates and environments shared by these two mammalian species, we proposed that the mitochondrial COXI gene is probably relevant for these native mammals to adapt the high altitude environment unique to the Tibetan Plateau.展开更多
基金This work was supported by Chinese Academy of Sciences(grant to Jun Yu,No.KSCX2一SW一331)National Natural Science Foundation of China fgrant to Ri—Li Ge,No.303931331Natural Research Foundation of Qinghai(grant to Ri—Li Ge,No.2003一N一120).
文摘To investigate genetic mechanisms of high altitude adaptations of native mammals on the Tibetan Plateau, we compared mitochondrial sequences of the endangered Pantholops hodgsonii with its lowland distant relatives Ovis ames and Capra hircus, as well as other mammals. The complete mitochondrial genome of P. hodgsonii (16,498 bp) revealed a similar gene order as of other mammals. Because of tandem duplications, the control region of P. hodgsonii mitochondrial genome is shorter than those of O. ames and C. hircus, but longer than those of Bos species. Phylogenetic analysis based on alignments of the entire cytochrome b genes suggested that P. hodgsonii is more closely related to O. ames and C. hircus, rather than to species of the Antilopinae subfamily. The estimated divergence time between P. hodgsonii and O. ames is about 2.25 million years ago. Eutther analysis on natural selection indicated that the COXI (cytochrome c oxidase subunit I) gene was under positive selection in P. hodgsonii and Bos grunniens. Considering the same climates and environments shared by these two mammalian species, we proposed that the mitochondrial COXI gene is probably relevant for these native mammals to adapt the high altitude environment unique to the Tibetan Plateau.