The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the succ...Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.展开更多
In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses...In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.展开更多
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic...Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.展开更多
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit...To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.展开更多
In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support i...In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.展开更多
Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off str...Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.展开更多
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab...In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.展开更多
Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground ...Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground engineering still remains in experience-based method and lacks quantitative analysis.As a connecting component between arch sections,the connection joints have an important influence on the internal force distribution and failure mechanism of support arch.Therefore,a reasonable design of arch joints is the premise of rational support design.Taking Liangjia Coal Mine,a typical deep soft rock mine in China,as research background,this paper fully compared the most widely used joint types of confined concrete arch as analytical objects:flange joints and casing joints.The main failure modes of these two kinds of joints under bending moment are defined.Laboratory and numerical tests are carried out to study the mechanical characteristics of joints.Based on the M-θ curve,the influence law of different design parameters is analyzed,and the design principles of joints are proposed.The research results could provide a theoretical basis for the design and application of confined concrete arch in related projects.展开更多
Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical...Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.展开更多
Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations,especially on the steep rock slope. In this paper,using the discrete element m...Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations,especially on the steep rock slope. In this paper,using the discrete element method(UDEC),numerical simulation was carried out to investigate deformation features and the failure mechanism of the steep rock slope under mining activities and rainfall. A steep rock slope numerical model was created based on a case study at the Wulong area in Chongqing city,China. Mechanical parameters of the rock mass have been determined by situ measurements and laboratory measurements. A preliminary site monitoring system has been realized,aiming at getting structure movements and stresses of unstablerock masses at the most significant discontinuities. According to the numerical model calibrated based on the monitoring data,four types of operation conditions are designed to reveal the effect of mining excavation and extreme rainfall on the deformation of the steep rock slope.展开更多
The New Austrian Tunneling Method (NATM) has been widely used in the construction of mountain tun- nels, urban metro lines, underground storage tanks, underground power houses, mining roadways, and so on, The variat...The New Austrian Tunneling Method (NATM) has been widely used in the construction of mountain tun- nels, urban metro lines, underground storage tanks, underground power houses, mining roadways, and so on, The variation patterns of advance geological prediction data, stress-strain data of supporting struc- tures, and deformation data of the surrounding rock are vitally important in assessing the rationality and reliability of construction schemes, and provide essential information to ensure the safety and scheduling of tunnel construction, However, as the quantity of these data increases significantly, the uncertainty and discreteness of the mass data make it extremely difficult to produce a reasonable con- struction scheme; they also reduce the forecast accuracy of accidents and dangerous situations, creating huge challenges in tunnel construction safety, In order to solve this problem, a novel data service system is proposed that uses data-association technology and the NATM, with the support of a big data environ- ment, This system can integrate data resources from distributed monitoring sensors during the construc- tion process, and then identify associations and build relations among data resources under the same construction conditions, These data associations and relations are then stored in a data pool, With the development and supplementation of the data pool, similar relations can then he used under similar con- ditions, in order to provide data references for construction schematic designs and resource allocation, The proposed data service system also provides valuable guidance for the construction of similar projects.展开更多
Cyclic shear tests on rock joints serve as a practical strategy for understanding the shear behavior of jointed rock masses under seismic conditions.We explored the cyclic shear behavior of en-echelon and how joint pe...Cyclic shear tests on rock joints serve as a practical strategy for understanding the shear behavior of jointed rock masses under seismic conditions.We explored the cyclic shear behavior of en-echelon and how joint persistence and test conditions(initial normal stress,normal stiffness,shear velocity,and cyclic distance)influence it through cyclic shear tests under CNS conditions.The results revealed a through-going shear zone induced by cyclic loads,characterized by abrasive rupture surfaces and brecciated material.Key findings included that increased joint persistence enlarged and smoothened the shear zone,while increased initial normal stress and cyclic distance,and decreased normal stiffness and shear velocity,diminished and roughened the brecciated material.Shear strength decreased across shear cycles,with the most significant reduction in the initial shear cycle.After ten cycles,the shear strength damage factor D varied from 0.785 to 0.909.Shear strength degradation was particularly sensitive to normal stiffness and cyclic distance.Low joint persistence,high initial normal stress,high normal stiffness,slow shear velocity,and large cyclic distance were the most destabilizing combinations.Cyclic loads significantly compressed en-echelon joints,with compressibility highly dependent on normal stress and stiffness.The frictional coefficient initially declined and then increased under a rising cycle number.This work provides crucial insights for understanding and predicting the mechanical response of en-echelon joints under seismic conditions.展开更多
Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of ...Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of formation and development of a sliding ground fissure by the circular sliding slice method.Moreover, we established a prediction model of a sliding fissure based on a mechanical mechanism,and verified its reliability on face 52,304, an engineering example, situated at Daliuta coal mine of Shendong mining area in western China. The results show that the stress state of a mining slope is changed by its gravity and additional stress from the shallow-buried coal seam and gully terrain. The mining slope is found to be most unstable when the ratio of the down-sliding to anti-sliding force is the maximum, causing local fractures and sliding fissures. The predicted angles for the sliding fissure of face 52,304 on both sides of the slope are found to be 64.2° and 82.4°, which are in agreement with the experimental data.展开更多
In order to improve the discrimination precision of support vector machine(SVM) in classification of surrounding rock, a Genetic Algorithm(GA) was used to optimize SVM parameters in the solution space.The idea of exam...In order to improve the discrimination precision of support vector machine(SVM) in classification of surrounding rock, a Genetic Algorithm(GA) was used to optimize SVM parameters in the solution space.The idea of examination of model reliability was introduced to check the reliability of the SVM parameters,obtained by genetic algorithms.In the process of model reliability,a trend examination method is presented,which checks the reliability of the model via the influence trend of impact factors on the object of evaluation and their evaluation level.Trend examination methods are universal,showing new ideas in model reliability examination and can be used in any problems of examination of reliability of models,based on previous experience.We established a GA-SVM based reliability model of a classification the surrounding rock and applied it to a practical engineering situation.The result shows that the improved SVM has a high capability for generalization and prediction accuracy in classification of surrounding rock.展开更多
The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approach...The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approaches used in soil slope with a continuous assumption, the simulation methods of jointed rock slope are different from that of in soil slope. This paper presents a study on jointed rock slope stability using the proposed discontinuous approach, which considers the effects of discrete fractures. Comparing with traditional methods to model fractures in an implicit way, the presented approach provides a method to simulate fractures in an explicit way, where grids between rock matrix and fractures are independent. To complete geometric components generation and mesh partition for the model, the corresponding algorithms were devised. To evaluate the stability state of rock slope quantitatively, the strength reduction method was integrated into our analysis framework. A benchmark example was used to verify the validation of the approach. A jointed rock slope, which contains natural fractures, was selected as a case study and was simulated regarding the workflow of our framework. It was set up in the light of the geological condition of the site. Slope stability was evaluated under different loading conditions with various fracture patterns. Numerical results show that fractures have significant contributions to slope stability, and different fracture patterns would lead to different shapes of the slip surface. The devised method has the ability to calculate a non-circular slip surface, which is different from a circular slip surface obtained by classical methods.展开更多
Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. St...Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. Starting from the study of the erosion resistibility of the sediment, this paper explores the internal mechanism of erosion phenomenon. This paper takes Diaokou as the study area and takes soils as samples which are mixed with clay into reconstructed samples whose ratio of clay content are 5%, 10%, 15%, 20% respectively, then dynamic tri-axial apparatus is applied to simulate wave loads of different intensity; then the resistibility of soil to erosion is determined via concentrated flow test and the structural property is determined via the disintegration test. Finally, the resistibility to erosion and the structural property of the non-compressed soil samples are compared with the compressed data. The results indicates that liquefaction failure exerts significant influence on the resistibility to erosion and the structural property of the silty soil in the Huanghe River Delta. Therefore, in the future erosion studies, the liquefaction phenomenon shall be fully considered.展开更多
Comprehensive mechanized top-coal caving mining is one of the efficient mining methods in coal mines.However,the goaf formed by comprehensive mechanized top-coal caving mining is high,and the goaf roof collapse will c...Comprehensive mechanized top-coal caving mining is one of the efficient mining methods in coal mines.However,the goaf formed by comprehensive mechanized top-coal caving mining is high,and the goaf roof collapse will cause strong dynamic pressure disturbance,especially the collapse of thick hard roof.Strong dynamic pressure disturbance has an influence on the stability of the roadway,which can lead to large deformation.In order to solve the above problem,a comprehensive pressure releasing and constant resistance energy absorbing control method is proposed.Comprehensive pressure releasing can change the roadway roof structure and cut off the stress transfer between goaf and roadway,which can improve the stress environment of the roadway.The constant resistance energy absorbing(CREA)anchor cable can absorb the energy of surrounding rock deformation and resist the impact load of gangue collapse,so as to ensure the stability of roadway disturbed by strong dynamic pressure.A three-dimensional geomechanics model test is carried out,based on the roadway disturbed by strong dynamic pressure of the extra-large coal mine in western China,to verify the control effect of the new control method.The stress and displacement evolution laws of the roadway with traditional control method and new control method are analyzed.The pressure releasing and energy absorbing control mechanism of the new control method is clarified.The geomechanics model test results show that the new control method can increase the range of low stress zone by 150%and reduce the average stress and the displacement by 34.7%and 67.8%respectively,compared with the traditional control method.The filed application results show that the new control method can reduce the roadway surrounding rock displacement by 67.4%compared with the traditional control method.It shows that the new control method can effectively control the displacement of the roadway disturbed by strong dynamic pressure and ensure that the roadway meets the safety requirements.On this basis,the engineering suggestions for large deformation control of this kind of roadway are put forward.The new control method can provide a control idea for the roadway disturbed by strong dynamic pressure.展开更多
The expanded distinct element method(EDEM)was used to investigate the crack growth in rock-like materials under uniaxial compression.The tensile-shear failure criterion and the Griffith failure criterion were implante...The expanded distinct element method(EDEM)was used to investigate the crack growth in rock-like materials under uniaxial compression.The tensile-shear failure criterion and the Griffith failure criterion were implanted into the EDEM to determine the initiation and propagation of pre-existing cracks,respectively.Uniaxial compression experiments were also performed with the artificial rock-like samples to verify the validity of the EDEM.Simulation results indicated that the EDEM model with the tensile-shear failure criterion has strong capabilities for modeling the growth of pre-existing cracks,and model results have strong agreement with the failure and mechanical properties of experimental samples.The EDEM model with the Griffith failure criterion can only simulate the splitting failure of samples due to tensile stresses and is incapable of providing a comprehensive interpretation for the overall failure of rock masses.Research results demonstrated that sample failure primarily resulted from the growth of single cracks(in the form of tensile wing cracks and shear secondary cracks)and the coalescence of two cracks due to the growth of wing cracks in the rock bridge zone.Additionally,the inclination angle of the pre-existing crack clearly influences the final failure pattern of the samples.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42077267,42277174,52074164)supported by the National Natural Science Foundation of ChinaProject(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation.The stability control of automatically formed roadway is the key to the successful application of the new method.In order to realize the stability control of the roadway surrounding rock,the mechanical model of the roof and rib support structure is established,and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed.On this basis,the roof and rib support structure technology of confined lightweight concrete is proposed,and its mechanical tests under different eccentricity are carried out.The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens.The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens.By comparing the test results with the theoretical calculated results of the confined concrete,the calculation method of the bearing capacity for the confined lightweight concrete structure is selected.The design method of confined lightweight concrete support structure is established,and is successfully applied in the extra-large mine,Ningtiaota Coal Mine,China.
基金supported by the National Natural Science Foundation of China(Nos.51927807,52074164,42277174,42077267 and 42177130)the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)China University of Mining and Technology(Beijing)Top Innovative Talent Cultivation Fund for Doctoral Students(No.BBJ2023048)。
文摘In underground engineering with complex conditions,the bolt(cable)anchorage support system is in an environment where static and dynamic stresses coexist,under the action of geological conditions such as high stresses and strong disturbances and construction conditions such as the application of high prestress.It is essential to study the support components performance under dynamic-static coupling conditions.Based on this,a multi-functional anchorage support dynamic-static coupling performance test system(MAC system)is developed,which can achieve 7 types of testing functions,including single component performance,anchored net performance,anchored rock performance and so on.The bolt and cable mechanical tests are conducted by MAC system under different prestress levels.The results showed that compared to the non-prestress condition,the impact resistance performance of prestressed bolts(cables)is significantly reduced.In the prestress range of 50–160 k N,the maximum reduction rate of impact energy resisted by different types of bolts is 53.9%–61.5%compared to non-prestress condition.In the prestress range of 150–300 k N,the impact energy resisted by high-strength cable is reduced by76.8%–84.6%compared to non-prestress condition.The MAC system achieves dynamic-static coupling performance test,which provide an effective means for the design of anchorage support system.
基金supported by the National Natural Science Foundation of China (Nos. 42277174, 42077267, and 52074164)the Natural Science Foundation of Shandong Province, China (No. ZR2020JQ23)+2 种基金Major Scientific and Technological Innovation Project of Shandong Province, China (No. 2019SDZY04)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program, China (No. 2019KJG013)the opening project of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (No. KFJJ21-02Z)。
文摘Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.
基金Projects(51304125,51379114)supported by the National Natural Science Foundation of ChinaProject(BS2013NJ004)supported by Award Fund for Outstanding Young and Middle-Aged Scientist of Shangdong Province,ChinaProject(201301004)supported by the Innovation Fund for Postdoctor of Shandong Province,China
文摘In deep underground mining, the surrounding rocks are very soft with high stress. Their deformation and destruction are serious, and frequent failures occur on the bolt support. The failure mechanism of bolt support is proposed to solve these problems. A calculation theory is established on the bond strength of the interface between the anchoring agent and surrounding rocks. An analysis is made on the influence law of different mechanical parameters of surrounding rocks on the interfacial bond strength. Based on the research, a new high-strength bolt-grouting technology is developed and applied on site. Besides, some helpful engineering suggestions and measures are proposed. The research shows that the serious deformation and failure, and the lower bond strength are the major factors causing frequent failures of bolt support. So, the bolt could not give full play to its supporting potential. It is also shown that as the integrity, strength, interface dilatancy and stress of surrounding rocks are improved, the bond strength will increase. So, the anchoring force on surrounding rocks can be effectively improved by employing an anchoring agent with high sand content, mechanical anchoring means, or grouting reinforcement. The new technology has advantages in a high strength, imposing pre-tightening force, and giving full play to the bolt supporting potential. Hence, it can improve the control effect on surrounding rocks. All these could be helpful references for the design of bolt support in deep underground mines.
基金This work was supported by the National Natural Science Foundation of China(Nos.51874188,52074164,42077267,and 51927807)the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.
基金This work was supported by the National Natural Science Foundation of China(Nos.41941018,52074164,and 42077267);the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.
基金This study was funded by The Natural Science Foundation of Shandong Province,China(Nos.ZR2017QEE013,2017GGX30101,2018GGX109001)The Young Scholars Program of Shandong University(2018WLJH76)The Research Fund of The State Key Laboratory of Coal Resources and safe Mining,CUMT(SKLCRSM18KF012).
文摘Square confined concrete arch is increasingly used in deep soft rock roadway support because of its advantages of high strength and construction convenience.However,the design of confined concrete arch in underground engineering still remains in experience-based method and lacks quantitative analysis.As a connecting component between arch sections,the connection joints have an important influence on the internal force distribution and failure mechanism of support arch.Therefore,a reasonable design of arch joints is the premise of rational support design.Taking Liangjia Coal Mine,a typical deep soft rock mine in China,as research background,this paper fully compared the most widely used joint types of confined concrete arch as analytical objects:flange joints and casing joints.The main failure modes of these two kinds of joints under bending moment are defined.Laboratory and numerical tests are carried out to study the mechanical characteristics of joints.Based on the M-θ curve,the influence law of different design parameters is analyzed,and the design principles of joints are proposed.The research results could provide a theoretical basis for the design and application of confined concrete arch in related projects.
基金Projects(51674154,51704125,51874188) supported by the National Natural Science Foundation of ChinaProjects(2017T100116,2017T100491,2016M590150,2016M602144) supported by the China Postdoctoral Science Foundation+2 种基金Projects(2017GGX30101,2018GGX109001,ZR2017QEE013) supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLCRSM18KF012) supported by the State Key Laboratory of Coal Resources and Safe Mining,ChinaProject(2018WLJH76) supported by the Young Scholars Program of Shandong University,China
文摘Soft rock control is a big challenge in underground engineering.As for this problem,a high-strength support technique of confined concrete(CC)arches is proposed and studied in this paper.Based on full-scale mechanical test system of arch,research is made on the failure mechanism and mechanical properties of CC arch.Then,a mechanical calculation model of circular section is established for the arches with arbitrary section and unequal rigidity;a calculation formula is deduced for the internal force of the arch;an analysis is made on the influence of different factors on the internal force of the arch;and a calculation formula is got for the bearing capacity of CC arch through the strength criterion of bearing capacity.With numerical calculation and laboratory experiment,the ultimate bearing capacity and internal force distribution is analyzed for CC arches.The research results show that:1)CC arch is 2.31 times higher in strength than the U-shaped steel arch and has better stability;2)The key damage position of the arch is the two sides;3)Theoretical analysis,numerical calculation and laboratory experiment have good consistency in the internal force distribution,bearing capacity,and deformation and failure modes of the arch.All of that verifies the correctness of the theoretical calculation.Based on the above results,a field experiment is carried out in Liangjia Mine.Compared with the U-shaped steel arch support,CC arch support is more effective in surrounding rock deformation control.The research results can provide a basis for the design of CC arch support in underground engineering.
基金financially supported by a grant from China Natural Science foundation (51379112,51422904)the National Program on Key Basic Research Project of China (973 Program)(2013CB036002)the National Natural Science Foundation of China (51309144)
文摘Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations,especially on the steep rock slope. In this paper,using the discrete element method(UDEC),numerical simulation was carried out to investigate deformation features and the failure mechanism of the steep rock slope under mining activities and rainfall. A steep rock slope numerical model was created based on a case study at the Wulong area in Chongqing city,China. Mechanical parameters of the rock mass have been determined by situ measurements and laboratory measurements. A preliminary site monitoring system has been realized,aiming at getting structure movements and stresses of unstablerock masses at the most significant discontinuities. According to the numerical model calibrated based on the monitoring data,four types of operation conditions are designed to reveal the effect of mining excavation and extreme rainfall on the deformation of the steep rock slope.
文摘The New Austrian Tunneling Method (NATM) has been widely used in the construction of mountain tun- nels, urban metro lines, underground storage tanks, underground power houses, mining roadways, and so on, The variation patterns of advance geological prediction data, stress-strain data of supporting struc- tures, and deformation data of the surrounding rock are vitally important in assessing the rationality and reliability of construction schemes, and provide essential information to ensure the safety and scheduling of tunnel construction, However, as the quantity of these data increases significantly, the uncertainty and discreteness of the mass data make it extremely difficult to produce a reasonable con- struction scheme; they also reduce the forecast accuracy of accidents and dangerous situations, creating huge challenges in tunnel construction safety, In order to solve this problem, a novel data service system is proposed that uses data-association technology and the NATM, with the support of a big data environ- ment, This system can integrate data resources from distributed monitoring sensors during the construc- tion process, and then identify associations and build relations among data resources under the same construction conditions, These data associations and relations are then stored in a data pool, With the development and supplementation of the data pool, similar relations can then he used under similar con- ditions, in order to provide data references for construction schematic designs and resource allocation, The proposed data service system also provides valuable guidance for the construction of similar projects.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42277174,42077267)supported by the National Natural Science Foundation of China;Project(ZR2020JQ23)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2022JCCXSB03)supported by the Fundamental Research Funds for the Central Universities,China。
基金funded by the China Scholarship Council(CSC.202006220274).
文摘Cyclic shear tests on rock joints serve as a practical strategy for understanding the shear behavior of jointed rock masses under seismic conditions.We explored the cyclic shear behavior of en-echelon and how joint persistence and test conditions(initial normal stress,normal stiffness,shear velocity,and cyclic distance)influence it through cyclic shear tests under CNS conditions.The results revealed a through-going shear zone induced by cyclic loads,characterized by abrasive rupture surfaces and brecciated material.Key findings included that increased joint persistence enlarged and smoothened the shear zone,while increased initial normal stress and cyclic distance,and decreased normal stiffness and shear velocity,diminished and roughened the brecciated material.Shear strength decreased across shear cycles,with the most significant reduction in the initial shear cycle.After ten cycles,the shear strength damage factor D varied from 0.785 to 0.909.Shear strength degradation was particularly sensitive to normal stiffness and cyclic distance.Low joint persistence,high initial normal stress,high normal stiffness,slow shear velocity,and large cyclic distance were the most destabilizing combinations.Cyclic loads significantly compressed en-echelon joints,with compressibility highly dependent on normal stress and stiffness.The frictional coefficient initially declined and then increased under a rising cycle number.This work provides crucial insights for understanding and predicting the mechanical response of en-echelon joints under seismic conditions.
基金Projects funded by the National Key Basic Research Development Program(No.2013CB227904)the National Natural Science Foundation of China(No.41272389)+1 种基金China Postdoctoral Science Foundation(No.2014M561931)the Natural Science Foundation of Hebei Province(No.D2014402007)
文摘Based on a shallow-buried coal seam covered with thick loose layers in hilly loess areas of western China,we developed a mechanical model for a mining slope with slope stability analysis, and studied the mechanism of formation and development of a sliding ground fissure by the circular sliding slice method.Moreover, we established a prediction model of a sliding fissure based on a mechanical mechanism,and verified its reliability on face 52,304, an engineering example, situated at Daliuta coal mine of Shendong mining area in western China. The results show that the stress state of a mining slope is changed by its gravity and additional stress from the shallow-buried coal seam and gully terrain. The mining slope is found to be most unstable when the ratio of the down-sliding to anti-sliding force is the maximum, causing local fractures and sliding fissures. The predicted angles for the sliding fissure of face 52,304 on both sides of the slope are found to be 64.2° and 82.4°, which are in agreement with the experimental data.
基金supported by the Key Project of Ministry of Education (No.108158)the Natural Science Foundation of Shandong Province(No.Y2007F53)the Postdoctoral Science Foundation of China(No.2009 0461203).
文摘In order to improve the discrimination precision of support vector machine(SVM) in classification of surrounding rock, a Genetic Algorithm(GA) was used to optimize SVM parameters in the solution space.The idea of examination of model reliability was introduced to check the reliability of the SVM parameters,obtained by genetic algorithms.In the process of model reliability,a trend examination method is presented,which checks the reliability of the model via the influence trend of impact factors on the object of evaluation and their evaluation level.Trend examination methods are universal,showing new ideas in model reliability examination and can be used in any problems of examination of reliability of models,based on previous experience.We established a GA-SVM based reliability model of a classification the surrounding rock and applied it to a practical engineering situation.The result shows that the improved SVM has a high capability for generalization and prediction accuracy in classification of surrounding rock.
基金supported by National Key Research and Development Plan of China (No. 2018YFF01014204)"Fundamental Research Program of China (No. 2015CB057906)"
文摘The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approaches used in soil slope with a continuous assumption, the simulation methods of jointed rock slope are different from that of in soil slope. This paper presents a study on jointed rock slope stability using the proposed discontinuous approach, which considers the effects of discrete fractures. Comparing with traditional methods to model fractures in an implicit way, the presented approach provides a method to simulate fractures in an explicit way, where grids between rock matrix and fractures are independent. To complete geometric components generation and mesh partition for the model, the corresponding algorithms were devised. To evaluate the stability state of rock slope quantitatively, the strength reduction method was integrated into our analysis framework. A benchmark example was used to verify the validation of the approach. A jointed rock slope, which contains natural fractures, was selected as a case study and was simulated regarding the workflow of our framework. It was set up in the light of the geological condition of the site. Slope stability was evaluated under different loading conditions with various fracture patterns. Numerical results show that fractures have significant contributions to slope stability, and different fracture patterns would lead to different shapes of the slip surface. The devised method has the ability to calculate a non-circular slip surface, which is different from a circular slip surface obtained by classical methods.
文摘Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. Starting from the study of the erosion resistibility of the sediment, this paper explores the internal mechanism of erosion phenomenon. This paper takes Diaokou as the study area and takes soils as samples which are mixed with clay into reconstructed samples whose ratio of clay content are 5%, 10%, 15%, 20% respectively, then dynamic tri-axial apparatus is applied to simulate wave loads of different intensity; then the resistibility of soil to erosion is determined via concentrated flow test and the structural property is determined via the disintegration test. Finally, the resistibility to erosion and the structural property of the non-compressed soil samples are compared with the compressed data. The results indicates that liquefaction failure exerts significant influence on the resistibility to erosion and the structural property of the silty soil in the Huanghe River Delta. Therefore, in the future erosion studies, the liquefaction phenomenon shall be fully considered.
基金supported by the National Natural Science Foundation of China (Grant Nos.52074164,42077267,42277174 and 42177130)the Fundamental Research Funds for the Central Universities,China (Grant No.2022JCCXSB03).
文摘Comprehensive mechanized top-coal caving mining is one of the efficient mining methods in coal mines.However,the goaf formed by comprehensive mechanized top-coal caving mining is high,and the goaf roof collapse will cause strong dynamic pressure disturbance,especially the collapse of thick hard roof.Strong dynamic pressure disturbance has an influence on the stability of the roadway,which can lead to large deformation.In order to solve the above problem,a comprehensive pressure releasing and constant resistance energy absorbing control method is proposed.Comprehensive pressure releasing can change the roadway roof structure and cut off the stress transfer between goaf and roadway,which can improve the stress environment of the roadway.The constant resistance energy absorbing(CREA)anchor cable can absorb the energy of surrounding rock deformation and resist the impact load of gangue collapse,so as to ensure the stability of roadway disturbed by strong dynamic pressure.A three-dimensional geomechanics model test is carried out,based on the roadway disturbed by strong dynamic pressure of the extra-large coal mine in western China,to verify the control effect of the new control method.The stress and displacement evolution laws of the roadway with traditional control method and new control method are analyzed.The pressure releasing and energy absorbing control mechanism of the new control method is clarified.The geomechanics model test results show that the new control method can increase the range of low stress zone by 150%and reduce the average stress and the displacement by 34.7%and 67.8%respectively,compared with the traditional control method.The filed application results show that the new control method can reduce the roadway surrounding rock displacement by 67.4%compared with the traditional control method.It shows that the new control method can effectively control the displacement of the roadway disturbed by strong dynamic pressure and ensure that the roadway meets the safety requirements.On this basis,the engineering suggestions for large deformation control of this kind of roadway are put forward.The new control method can provide a control idea for the roadway disturbed by strong dynamic pressure.
文摘The expanded distinct element method(EDEM)was used to investigate the crack growth in rock-like materials under uniaxial compression.The tensile-shear failure criterion and the Griffith failure criterion were implanted into the EDEM to determine the initiation and propagation of pre-existing cracks,respectively.Uniaxial compression experiments were also performed with the artificial rock-like samples to verify the validity of the EDEM.Simulation results indicated that the EDEM model with the tensile-shear failure criterion has strong capabilities for modeling the growth of pre-existing cracks,and model results have strong agreement with the failure and mechanical properties of experimental samples.The EDEM model with the Griffith failure criterion can only simulate the splitting failure of samples due to tensile stresses and is incapable of providing a comprehensive interpretation for the overall failure of rock masses.Research results demonstrated that sample failure primarily resulted from the growth of single cracks(in the form of tensile wing cracks and shear secondary cracks)and the coalescence of two cracks due to the growth of wing cracks in the rock bridge zone.Additionally,the inclination angle of the pre-existing crack clearly influences the final failure pattern of the samples.