A simple and facile gas chromatography-mass spectrometer (GC-MS) fingerprint of Su-He-Xiang-Wan (SHXW) was developed, the similarity analysis was conducted, and attribution of the major characteristic peaks was id...A simple and facile gas chromatography-mass spectrometer (GC-MS) fingerprint of Su-He-Xiang-Wan (SHXW) was developed, the similarity analysis was conducted, and attribution of the major characteristic peaks was identified for SHXW quality control. GC-MS analysis was performed on a QP2010 instrument (Shimadzu, Japan) equipped with a capillary column of RTX-5MS. The column temperature was initiated at 50℃, held for 5 min, increased at the rate of 3 ℃/min to 120 ℃, held for 2 min, and then increased at the rate of 4 ℃/min to 220℃, held for 10 min. Helium carrier gas was used at a constant flow rate of 1.3 mL/min. Mass conditions were ionization voltage, 70 eV; injector temperature, 250℃; ion source temperature, 250 ℃; splitting ratio, 30:1; full scan mode in the 40-500 Da mass ranges with rate of 0.2 s per scan. Attribution of the major characteristic peaks was identified for SHXW by comparing the chemical standards, references of Chinese herbal medicines and the negative controls of prescription samples (NC) of SHXW. With the help of the temperature-programmed retention indices (PTRIs) used together with mass spectra and chemical standards, 25 major characteristic peaks have been identified. Nine volatile medicinal materials were identified in the prescription of SHXW by attributing to the 27 major characteristic peaks. The results demonstrate that the proposed method is a powerful approach to quality control of complex herbal medicines.展开更多
To further test whether polynitriprismanes are capable of being potential high energy density materials (HEDMs), extensive theoretical calculations were carried out to investigate on a series of polynitrotriprisman...To further test whether polynitriprismanes are capable of being potential high energy density materials (HEDMs), extensive theoretical calculations were carried out to investigate on a series of polynitrotriprismanes (PNNPs): C6H6-.(NO2). (n=1-6) Heats of formation (HOFs), strain energies (SE), and disproportionation energy (DE) were obtained using B3LYP/6-311+G(2df, 2p)//B3LYP/6-31G* method by designing different isodesmic reactions, respectively. Detonation properties of PNNPs were obtained by the well-known KAMLET-JACOBS equations, using the predicted densities (p) obtained by Monte Carlo method and HOFs. It is found that they increase as the number of nitro groups n varies from 1 to 6, and PNNPs with n〉4 have excellent detonation properties The relative stability and the pyrolysis mechanism of PNNPs were evaluated by the calculated bond dissociation energy (BDE). The comparison of BDE suggests that rupturing the C--C bond is the trigger for thermolysis of PNNPs. The computed BDE for cleavage of C--C bond (88.5 kJ/mol) further demonstrates that only the hexa-nitrotriprismane can be considered to be the target of HEDMs.展开更多
Aristolochic acid (AA) is a known nephrotoxin and potential carcinogen, which can form covalent DNA adducts after metabolic activation in vivo and in vitro. A simple method for preparation and characterization of ar...Aristolochic acid (AA) is a known nephrotoxin and potential carcinogen, which can form covalent DNA adducts after metabolic activation in vivo and in vitro. A simple method for preparation and characterization of aristolochic acid-DNA adducts was developed. Four AA-adducts were synthesized by a direct reaction of AAI/AAII with 2′-deoxynucleosides. The reaction mixture was first cleaned-up and pre-concentrated using solid phase extraction (SPE), and further purified by a reversed-phase high performance liquid chromatography (HPLC). By the application of developed SPE procedure, matrices and byproducts in reaction mixture could be greatly reduced and adducts of high purity (more than 94% as indicated by HPLC) were obtained. The purified AA-DNA adducts were identified and characterized with liquid-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-Q-TOF-MS/MS) and LC-Diode array detector-fluorescence (LC-DAD-FL) analysis. This work provides a robust tool for possible large-scale preparation of AA-DNA adduct standards, which can promote the further studies on carcinogenic and mutagenic mechanism of aristolochic acids.展开更多
A simple and sensitive high performance liquid chromatography-chemical vapour generation-atom fluorescent spectrometry (HPLC-CVG-AFS) method was developed and validated for simultaneous determination mercury species...A simple and sensitive high performance liquid chromatography-chemical vapour generation-atom fluorescent spectrometry (HPLC-CVG-AFS) method was developed and validated for simultaneous determination mercury species in Su-He-Xiang-Wan (SHXW) and in tissues of rats, respectively. The species of mercury were separated by a Venusil MP-C 18 (5μm, 150 mm×4.6 ram) column with the optimized mobile phase containing 5% (w/v) acetonitrile, 0.01 mol/L L-cysteine and 0.06 moL/L ammonium acetate. The tissues of rats were freeze-dried after giving the medicine for 10 d, and then added into the solution containing 10% (w/v) HC1, 1% (w/v) sulfocarbamide and 0.15% (w/v) KC1 for increasing extraction rate. The resolutions of Hg2+, MeHg and EtHg were 1.5 and 2.9, respectively. The detection limits of Hg2+, MeHg and EtHg were 2.0, 1.0 and 0.9 ng/mL, respectively. The relative standard deviation (RSD) of inter- and intra-day precisions ranged from 1.56% to 2.86%. The recovery rates of three different adding level were 87%-101% (n=6), and the RSDs were smaller than 8.2%. The results show that no MeHg and EtHg were detected in rat tissues. Only soluble mercury (Hg2+) was determined for the mercury species of SHXW in rat tissues.展开更多
基金Foundation item: Projects(21275164, 21075138) supported by the National Natural Science Foundation of China
文摘A simple and facile gas chromatography-mass spectrometer (GC-MS) fingerprint of Su-He-Xiang-Wan (SHXW) was developed, the similarity analysis was conducted, and attribution of the major characteristic peaks was identified for SHXW quality control. GC-MS analysis was performed on a QP2010 instrument (Shimadzu, Japan) equipped with a capillary column of RTX-5MS. The column temperature was initiated at 50℃, held for 5 min, increased at the rate of 3 ℃/min to 120 ℃, held for 2 min, and then increased at the rate of 4 ℃/min to 220℃, held for 10 min. Helium carrier gas was used at a constant flow rate of 1.3 mL/min. Mass conditions were ionization voltage, 70 eV; injector temperature, 250℃; ion source temperature, 250 ℃; splitting ratio, 30:1; full scan mode in the 40-500 Da mass ranges with rate of 0.2 s per scan. Attribution of the major characteristic peaks was identified for SHXW by comparing the chemical standards, references of Chinese herbal medicines and the negative controls of prescription samples (NC) of SHXW. With the help of the temperature-programmed retention indices (PTRIs) used together with mass spectra and chemical standards, 25 major characteristic peaks have been identified. Nine volatile medicinal materials were identified in the prescription of SHXW by attributing to the 27 major characteristic peaks. The results demonstrate that the proposed method is a powerful approach to quality control of complex herbal medicines.
基金Projects(2006DFA41090,2007DFA40680) supported by the International Cooperation Project on Traditional Chinese Medicines of Ministry of Science and Technology of ChinaProject(20475066) supported by the National Natural Science Foundation of China
文摘To further test whether polynitriprismanes are capable of being potential high energy density materials (HEDMs), extensive theoretical calculations were carried out to investigate on a series of polynitrotriprismanes (PNNPs): C6H6-.(NO2). (n=1-6) Heats of formation (HOFs), strain energies (SE), and disproportionation energy (DE) were obtained using B3LYP/6-311+G(2df, 2p)//B3LYP/6-31G* method by designing different isodesmic reactions, respectively. Detonation properties of PNNPs were obtained by the well-known KAMLET-JACOBS equations, using the predicted densities (p) obtained by Monte Carlo method and HOFs. It is found that they increase as the number of nitro groups n varies from 1 to 6, and PNNPs with n〉4 have excellent detonation properties The relative stability and the pyrolysis mechanism of PNNPs were evaluated by the calculated bond dissociation energy (BDE). The comparison of BDE suggests that rupturing the C--C bond is the trigger for thermolysis of PNNPs. The computed BDE for cleavage of C--C bond (88.5 kJ/mol) further demonstrates that only the hexa-nitrotriprismane can be considered to be the target of HEDMs.
基金supported by the National Basic Research Program (973) of China (No. 2007CB407305,2008CB417201)the National High Technology Research and Development Program (863) of China (No.2007AA06A407)the National Natural Science Foundation of China (No. 20737003, 20621703, 20805057)
文摘Aristolochic acid (AA) is a known nephrotoxin and potential carcinogen, which can form covalent DNA adducts after metabolic activation in vivo and in vitro. A simple method for preparation and characterization of aristolochic acid-DNA adducts was developed. Four AA-adducts were synthesized by a direct reaction of AAI/AAII with 2′-deoxynucleosides. The reaction mixture was first cleaned-up and pre-concentrated using solid phase extraction (SPE), and further purified by a reversed-phase high performance liquid chromatography (HPLC). By the application of developed SPE procedure, matrices and byproducts in reaction mixture could be greatly reduced and adducts of high purity (more than 94% as indicated by HPLC) were obtained. The purified AA-DNA adducts were identified and characterized with liquid-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-Q-TOF-MS/MS) and LC-Diode array detector-fluorescence (LC-DAD-FL) analysis. This work provides a robust tool for possible large-scale preparation of AA-DNA adduct standards, which can promote the further studies on carcinogenic and mutagenic mechanism of aristolochic acids.
基金Projects(20875104, 21075138) supported by the National Natural Science Foundation of China
文摘A simple and sensitive high performance liquid chromatography-chemical vapour generation-atom fluorescent spectrometry (HPLC-CVG-AFS) method was developed and validated for simultaneous determination mercury species in Su-He-Xiang-Wan (SHXW) and in tissues of rats, respectively. The species of mercury were separated by a Venusil MP-C 18 (5μm, 150 mm×4.6 ram) column with the optimized mobile phase containing 5% (w/v) acetonitrile, 0.01 mol/L L-cysteine and 0.06 moL/L ammonium acetate. The tissues of rats were freeze-dried after giving the medicine for 10 d, and then added into the solution containing 10% (w/v) HC1, 1% (w/v) sulfocarbamide and 0.15% (w/v) KC1 for increasing extraction rate. The resolutions of Hg2+, MeHg and EtHg were 1.5 and 2.9, respectively. The detection limits of Hg2+, MeHg and EtHg were 2.0, 1.0 and 0.9 ng/mL, respectively. The relative standard deviation (RSD) of inter- and intra-day precisions ranged from 1.56% to 2.86%. The recovery rates of three different adding level were 87%-101% (n=6), and the RSDs were smaller than 8.2%. The results show that no MeHg and EtHg were detected in rat tissues. Only soluble mercury (Hg2+) was determined for the mercury species of SHXW in rat tissues.