期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向可持续淡水供应的吸附式空气取水技术的研究进展与展望:材料、装置和系统
1
作者 白钊远 王鹏飞 +2 位作者 许嘉兴 王如竹 李廷贤 《Science Bulletin》 SCIE EI CAS CSCD 2024年第5期671-687,共17页
Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity,particularly in land-locked arid regions.In this context,extracting water from the ubiquitous atm... Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity,particularly in land-locked arid regions.In this context,extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production.Sorption-based atmospheric water harvesting(SAWH)shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments.Herein,the latest progress in SAWH technology in terms of materials,devices,and systems is reviewed.Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption–desorption kinetics,including physical sorbents,polymeric hydrogels,composite sorbents,and ionic solutions,are discussed.The thermal designs of SAWH devices for improving energy utilization efficiency,heat transfer,and mass transport are evaluated,and the development of representative SAWH prototypes is clarified in a chronological order.Thereafter,state-of-the-art operation patterns of SAWH systems,incorporating intermittent,daytime continuous and 24-hour continuous patterns,are examined.Furthermore,current challenges and future research goals of this cutting-edge field are outlined.This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters. 展开更多
关键词 Atmospheric water harvesting Water vapor sorption Water sorbents Thermal design Heat transfer Mass transport
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部