期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Characters of Urban Development and Its Spatial Morphology Underground Space Influences on Urban
1
作者 Chen Zhilong Yang Xiaobin 《Review of Global Academics》 2014年第2期205-215,共11页
关键词 城市空间形态 空间影响 城市发展 地下建筑物 人物 外部环境 功能结构 建筑外观
下载PDF
Investigation of mechanical failure performance of a large-diameter shield tunnel segmental ring
2
作者 Binyong GAO Renpeng CHEN +3 位作者 Huaina WU Chengcheng ZHANG Meng FAN Chao XIAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第5期411-428,共18页
The control criteria for structural deformation and the evaluation of operational safety performance for large-diameter shield tunnel segments are not yet clearly defined.To address this issue,a refined 3D finite elem... The control criteria for structural deformation and the evaluation of operational safety performance for large-diameter shield tunnel segments are not yet clearly defined.To address this issue,a refined 3D finite element model was established to analyze the transverse deformation response of a large-diameter segmental ring.By analyzing the stress,deformation,and crack distribution of large-diameter segments under overload conditions,the transverse deformation of the segmental ring could be divided into four stages.The main reasons for the decrease in segmental ring stiffness were found to be the extensive development of cracks and the complete formation of four plastic hinges.The deformation control value for the large-diameter shield tunnel segment is chosen as 8%o of the segment's outer diameter,representing the transverse deformation during the formation of the first semi-plastic hinge(i.e.,the first yield point)in the structure.This control value can serve as a reinforcement standard for preventing the failure of large-diameter shield tunnel segments.The flexural bearing capacity characteristic curve of segments was used to evaluate the structural strength of a large-diameter segmental ring.It was discovered that the maximum internal force combination of the segment did not exceed the segment ultimate bearing capacity curve(SUBC).However,the combination of internal force at 9°,85°,and 161°of the joints,and their symmetrical locations about the 0°-180°axis exceeded the joint ultimate bearing capacity curve(JUBC).The results indicate that the failure of the large-diameter segment lining was mainly due to insufficient joint strength,leading to an instability failure.The findings from this study can be used to develop more effective maintenance strategies for large-diameter shield tunnel segments to ensure their long-term performance. 展开更多
关键词 Finite element model Transverse deformation response Upper overload Plastic hinges Flexural bearing capacity
原文传递
Weakening behavior of waterproof performance in joints of shield tunnels under adjacent constructions
3
作者 Huai-Na WU Lei LIU +4 位作者 Yuan LIU Ren-Peng CHEN Hai-Lin WANG Shi-Qiang RUAN Meng FAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第6期884-900,共17页
Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading ... Groundwater leakage in shield tunnels poses a threat to the safety and durability of tunnel structures. Disturbance of adjacent constructions during the operation of shield tunnels frequently occurs in China, leading to deformation of tunnel lining and leakage in joints. Understanding the impact of adjacent constructions on the waterproofing performance of the lining is critical for the protection of shield tunnels. In this study, the weakening behavior of waterproof performance was investigated in the joints of shield tunnels under transverse deformation induced by adjacent construction. First, the relationship between the joint opening and transverse deformation under three typical adjacent constructions (upper loading, upper excavation, and side excavation) was investigated via elaborate numerical simulations. Subsequently, the evolution of the waterproof performance of a common gasket with a joint opening was examined by establishing a coupled Eulerian-Lagrangian model of joint seepage, and a formula describing the relationship between waterproof performance and joint opening was proposed. Finally, the weakening law of waterproofing performance was investigated based on the results of the aforementioned studies. It was determined that the joints with the greatest decline in waterproof performance were located at the tunnel shoulder in the upper loading case, tunnel crown in the upper excavation case, and tunnel shoulder in the side excavation case. When the waterproof performance of these joints decreased to 50% and 30%, the transverse deformations were 60 and 90 mm under upper loading, 90 and 140 mm under upper excavation, and 45 and 70 mm under side excavation, respectively. The results provide a straightforward reference for setting a controlled deformation standard considering the waterproof performance. 展开更多
关键词 shield tunnel waterproof performance horizontal transverse deformation joint opening weakenning behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部