期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Ceramic membrane fouling mechanisms and control for water treatment 被引量:1
1
作者 Cheng Cai Wenjun Sun +2 位作者 Siyuan He Yuanna Zhang Xuelin Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2023年第10期103-117,共15页
Membrane separation, as an important drinking water treatment technology, has wide applications. The remarkable advantages of ceramic membranes, such as chemical stability, thermal stability, and high mechanical stren... Membrane separation, as an important drinking water treatment technology, has wide applications. The remarkable advantages of ceramic membranes, such as chemical stability, thermal stability, and high mechanical strength, endow them with broader prospects for development. Despite the importance and advantages of membrane separation in water treatment, the technique has a limitation: membrane fouling, which greatly lowers its effectiveness. This is caused by organics, inorganic substances, and microorganisms clogging the pore and polluting the membrane surface. The increase in membrane pollution greatly lowers purification effectiveness. Controlling membrane fouling is critical in ensuring the efficient and stable operation of ceramic membranes for water treatment. This review analyzes four mechanisms of ceramic membrane fouling, namely complete blocking, standard blocking, intermediate blocking, and cake filtration blocking. It evaluates the mechanisms underlying ceramic membrane fouling and summarizes the progress in approaches aimed at controlling it. These include ceramic membrane pretreatment, ceramic membrane surface modification, membrane cleaning, magnetization, ultrasonics, and nanobubbles. This review highlights the importance of optimizing ceramic membrane preparation through further research on membrane fouling and pre-membrane pretreatment mechanisms. In addition, combining process regulations with ceramic membranes as the core is an important research direction for ceramic membrane-based water treatment. 展开更多
关键词 Ceramic membrane Fouling model Fouling control
原文传递
Dissolved organic matter accelerates microbial degradation of 17 alpha-ethinylestradiol in the presence of iron mineral
2
作者 Huan He Min Shi +8 位作者 Xiaoxia Yang Juhong Zhan Yanting Lin Ziwei Guo Zhicheng Liao Chaochao Lai Xiaomin Ren Bin Huang Xuejun Pan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第5期364-376,共13页
Dissolved organic matter(DOM)and iron minerals widely existing in the natural aquatic environment can mediate the migration and transformation of organic pollutants.However,the mechanism of interaction between DOM and... Dissolved organic matter(DOM)and iron minerals widely existing in the natural aquatic environment can mediate the migration and transformation of organic pollutants.However,the mechanism of interaction between DOM and iron minerals in the microbial degradation of pollutants deserves further investigation.In this study,the mechanism of 17 alphaethinylestradiol(EE2)biodegradation mediated by humic acid(HA)and three kinds of iron minerals(goethite,magnetite,and pyrite)was investigated.The results found that HA and iron minerals significantly accelerated the biodegradation process of EE2,and the highest degradation efficiency of EE2(48%)was observed in the HA-mediated microbial system with pyrite under aerobic conditions.Furthermore,it had been demonstrated that hydroxyl radicals(HO·)was the main active substance responsible for the microbial degradation of EE2.HO·is primarily generated through the reaction between hydrogen peroxide secreted by microorganisms and Fe(II),with aerobic conditions being more conducive.The presence of iron minerals and HA could change the microbial communities in the EE2 biodegradation system.These findings provide new information for exploring the migration and transformation of pollutants by microorganisms in iron-rich environments. 展开更多
关键词 Dissolved organic matter Iron mineral 17 alpha-ethinylestradiol BIODEGRADATION
原文传递
Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics 被引量:3
3
作者 Yuqing Xu Zedong Lu +1 位作者 Wenjun Sun Xiaohui Zhang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第6期391-403,共13页
Optimizing the characteristics of granular activated carbon(GAC)can improve the performance of biologically activated carbon(BAC)filters,and iodine value has always been the principal index for GAC selection.However,i... Optimizing the characteristics of granular activated carbon(GAC)can improve the performance of biologically activated carbon(BAC)filters,and iodine value has always been the principal index for GAC selection.However,in this study,among three types of GAC treating the same humic acidcontaminated water,one had an iodine value 35%lower than the other two,but the dissolved organic carbon removal efficiency of its BAC was less than 5%away from the others.Iodine value was found to influence the removal of different organic fractions instead of the total removal efficiency.Based on the removal and biological characteristics,two possible mechanisms of organic matter removal during steady-state were suggested.For GAC with poor micropore volume and iodine value,high molecular weight substances(3500–9000 Da)were removed mainly through degradation by microorganisms,and the biodegraded organics(soluble microbial by-products,<3500 Da)were released because of the low adsorption capacity of activated carbon.For GAC with higher micropore volume and iodine value,organics with low molecular weight(<3500 Da)were more easily removed,first being adsorbed by micropores and then biodegraded by the biofilm.The biomass was determined by the pore volume with pore diameters greater than 100μm,but did not correspond to the removal efficiency.Nevertheless,the microbial community structure was coordinate with both the pore structure and the organic removal characteristics.The findings provide a theoretical basis for selecting GAC for the BAC process based on its pore structure. 展开更多
关键词 Granular activated carbon Biologically activated carbon filter Bacterial community structure Pore structure
原文传递
Modelling the thresholds of nitrogen/phosphorus concentration and hydraulic retention time for bloom control in reclaimed water landscape 被引量:1
4
作者 Keying Song Shufeng Zhu +7 位作者 Yun Lu Guohua Dao Yinhu Wu Zhuo Chen Shengnan Wang Junhan Liu Wenguang Zhou Hong-Ying Hu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第10期53-63,共11页
The risks posed by algal blooms caused by nitrogen and phosphorus in reclaimed water used in urban water landscapes need to be carefully controlled.In this study,the combined effects of the nitrogen and phosphorus con... The risks posed by algal blooms caused by nitrogen and phosphorus in reclaimed water used in urban water landscapes need to be carefully controlled.In this study,the combined effects of the nitrogen and phosphorus concentrations and the light intensity and temperature on the specific growth rates of algae were determined using Monod,Steele,and Arrhenius models,then an integrated algal growth model was developed.The algae biomass,nitrogen concentration,and phosphorus concentration mass balance equations were used to establish a new control model describing the nitrogen and phosphorus concentration and hydraulic retention time thresholds for algal blooms.The model parameters were determined by fitting the models to data acquired experimentally.Finally,the control model and numerical simulations for six typical algae and mixed algae under standard conditions were used to determine nitrogen/phosphorus concentration and hydraulic retention time thresholds for landscape water to which reclaimed water is supplied(i.e.,for a reclaimed water landscape). 展开更多
关键词 Reclaimed water landscape Algal bloom Nitrogen and phosphorus Hydraulic retention time THRESHOLD Control model
原文传递
Seasonal variations of microbial community and antibiotic resistome in a suburb drinking water distribution system in a northern Chinese city 被引量:1
5
作者 Yanchu Ke Wenjun Sun +2 位作者 Zibo Jing Zhinan Zhao Shuguang Xie 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第5期714-725,共12页
Antibiotic resistance genes(ARGs)are an emerging issue for drinkingwater safety.However,the seasonal variation of ARGs in drinking water distribution systems(DWDS)is still unclear.This work revealed the tempo-spatial ... Antibiotic resistance genes(ARGs)are an emerging issue for drinkingwater safety.However,the seasonal variation of ARGs in drinking water distribution systems(DWDS)is still unclear.This work revealed the tempo-spatial changes of microbial community,ARGs,mobile genetic elements(MGEs)co-occurring with ARGs,ARG hosts in DWDS bulk water by means of metagenome assembly.The microbial community and antibiotic resistome varied with sampling season and site.Temperature,ammonia,chlorite and total plate count(TPC)drove the variations of microbial community structure.Moreover,environmental parameters(total organic carbon(TOC),chlorite,TPC and hardness)shifted antibiotic resistome.ARGs and MGEs co-occurring with ARGs showed higher relative abundance in summer and autumn,which might be attributed to detached pipe biofilm.In particular,ARG-bacitracin and plasmid were the predominant ARG and MGE,respectively.ARG hosts changed with season and site and were more diverse in summer and autumn.In winter and spring,Limnohabitans and Mycobacterium were the major ARG hosts as well as the dominant genera in microbial community.In addition,in summer and autumn,high relative abundance of Achromobacter and Stenotrophomonas were the hosts harboring many kinds of ARGs and MGEs at site in a residential zone(0.4 km from the water treatment plant).Compared with MGEs,microbial community had a greater contribution to the variation of antibiotic resistome.This work gives new insights into the dynamics of ARGs in full-scale DWDS and the underlying factors. 展开更多
关键词 Drinking water distribution system Seasonal change Microbial community Antibiotic resistance genes Mobile genetic elements
原文传递
Molecular ecological networks reveal the spatial-temporal variation of microbial communities in drinking water distribution systems
6
作者 Zibo Jing Zedong Lu +5 位作者 Zhinan Zhao Wenfeng Cao Weibo Wang Yanchu Ke Xiaohui Wang Wenjun Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期176-186,共11页
Microbial activity and regrowth in drinking water distribution systems is a major concern for water service companies.However,previous studies have focused on the microbial composition and diversity of the drinkingwat... Microbial activity and regrowth in drinking water distribution systems is a major concern for water service companies.However,previous studies have focused on the microbial composition and diversity of the drinkingwater distribution systems(DWDSs),with little discussion on microbial molecular ecological networks(MENs)in different water supply networks.MEN analysis explores the potentialmicrobial interaction and the impact of environmental stress,to explain the characteristics of microbial community structures.In this study,the random matrix theory-based network analysis was employed to investigate the impact of seasonal variation including water source switching on the networks of three DWDSs that used different disinfection methods.The results showed that microbial interaction varied slightly with the seasons but was significantly influenced by different DWDSs.Proteobacteria,identified as key species,play an important role in the network.Combined UV-chlorine disinfection can effectively reduce the size and complexity of the network compared to chlorine disinfection alone,ignoring seasonal variations,which may affect microbial activity or control microbial regrowth in DWDSs.This study provides new insights for analyzing the dynamics of microbial interactions in DWDSs. 展开更多
关键词 Drinking water distribution system Molecular ecological network Water source switch UV-chlorine combined disinfection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部