In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle (HEV) applications is addressed, Because motor parameter variations in HEV applications are larger than...In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle (HEV) applications is addressed, Because motor parameter variations in HEV applications are larger than in industrial drive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-based extension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed in order to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme is robust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor is chosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy losses shown by simulations.展开更多
基金This work was supported in part by State Science and Technology Pursuing Project of China (No. 2001BA204B01).
文摘In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle (HEV) applications is addressed, Because motor parameter variations in HEV applications are larger than in industrial drive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-based extension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed in order to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme is robust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor is chosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy losses shown by simulations.