The purpose of this study was to investigate the influence of the supercritical CO2 processing on the particle size and morphology of puerarin crystals. The process parameters included solvents, temperature, pressures...The purpose of this study was to investigate the influence of the supercritical CO2 processing on the particle size and morphology of puerarin crystals. The process parameters included solvents, temperature, pressures, antisolvent times, addition volumes, antisolvent addition rates and solute concentrations. After being processed, the dramatic reduction of the dimensions and the change of the crystal shape were noticed. Decreasing the antisolvent addition rate, increasing the temperature and the addition volume below 50 ml led to a decrease in size. The new crystal of puerarin generated at the optimal conditions was 30.34 μm.The solvent of methanol and the concentration of 60 mg/ml were found to determine the type and degree of crystallinity of particles. These results showed that this process has the potential to produce a drug recrystallization product with newly generated crystal forms and the size of drug particles could be controlled through the tuning of various experimental conditions.展开更多
基金the Basic Research Program from Science,Industry,Trade and Information Technology Commission of Shenzhen Municipality(Grant no.JCYJ20130402145002398)National Natural Science Foundation of China(Grant no.81102824).
文摘The purpose of this study was to investigate the influence of the supercritical CO2 processing on the particle size and morphology of puerarin crystals. The process parameters included solvents, temperature, pressures, antisolvent times, addition volumes, antisolvent addition rates and solute concentrations. After being processed, the dramatic reduction of the dimensions and the change of the crystal shape were noticed. Decreasing the antisolvent addition rate, increasing the temperature and the addition volume below 50 ml led to a decrease in size. The new crystal of puerarin generated at the optimal conditions was 30.34 μm.The solvent of methanol and the concentration of 60 mg/ml were found to determine the type and degree of crystallinity of particles. These results showed that this process has the potential to produce a drug recrystallization product with newly generated crystal forms and the size of drug particles could be controlled through the tuning of various experimental conditions.