Characterized by complex lithology and strong heterogeneity, volcanic reservoirs in China developed three reservoir space types: primary pores, secondary pores and fractures. The formation of reservoir space went thr...Characterized by complex lithology and strong heterogeneity, volcanic reservoirs in China developed three reservoir space types: primary pores, secondary pores and fractures. The formation of reservoir space went through the cooling and solidification stage (including blast fragmentation, crystallization differentiation and solidification) and the epidiagenesis stage (including metasomatism, filling, weathering and leaching, formation fluid dissolution and tectonism). Primary pores were formed at the solidification stage, which laid the foundation for the development and transformation of effective reservoirs. Secondary pores were formed at the epidiagenesis stage, with key factors as weathering and leaching, formation fluid dissolution and tectonism. In China, Mesozoic-Cenozoic volcanic rocks developed in the Songliao Basin and Bohai Bay Basin in the east and Late Paleozoic volcanic rocks developed in the Junggar Basin, Santanghu Basin and Ta- rim Basin in the west. There are primary volcanic reser- voirs and secondary volcanic reservoirs in these volcanic rocks, which have good accumulation conditions and great exploration potential.展开更多
The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian.Based on the reconstruction of tectonic setting and the analysis of major...The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian.Based on the reconstruction of tectonic setting and the analysis of major geological events in Mesoproterozoic-Neoproterozoic,the petroleum geological conditions of Proterozoic to Cambrian are discussed in this paper from three aspects,i.e.source rocks,reservoir conditions,and the type and efficiency of play.It is found that lower organisms boomed in the interglacial epoch from Mesoproterozoic-Neoproterozoic to Eopaleozoic when the organic matters concentrated and high quality source rocks formed.Sinian-Cambrian microbial rock and grain-stone banks overlapped with multiple-period constructive digenesis may form large-scale reservoir rocks.However,because of the anoxic event and weak weathering effect in Eopaleozoic-Mesoproterozoic,the reservoirs are generally poor in quality,and only the reservoirs that suffered weathering and leaching may have the opportunity to form dissolution-reconstructed reservoirs.There are large rifts formed during Mesoproterozoic-Neoproterozoic in Huabei Craton,Yangtze Craton,and Tarim Craton in China,and definitely source rocks in the rifts,while whether there are favorite source-reservoir plays depends on circumstance.The existence of Sinian-Cambrian effective play has been proved in Upper Yangtze area.The effectiveness of source-reservoir plays in Huabei area depends on two factors:(1)the effectiveness of secondary play formed by Proterozoic source rock and Paleozoic,Mesozoic,Cenozoic reservoir rocks;(2)the matching between reservoirs formed by reconstruction from Mesoproterozoic-Neoproterozoic to Eopaleozoic and the inner hydrocarbon kitchens with late hydrocarbon generation.As for Tarim Basin,the time of Proterozoic and the original basin should be analyzed before the evaluation of the effective play.To sum up,Proterozoic to Cambrian in the three craton basins in China is a potential exploration formation,which deserves further investigation and research.展开更多
Based on the investigation of tight oil exploration and development in North America, the successful cases of tight oil exploration and development in North America are summarized. The geological differences between c...Based on the investigation of tight oil exploration and development in North America, the successful cases of tight oil exploration and development in North America are summarized. The geological differences between continental tight oil in China and marine tight oil in North America is analyzed to explore the technical strategies for the industrial development of continental tight oil in China. The experiences of large-scale exploration and profitable development of tight oil in North America can be taken as references from the following 6 perspectives, namely exploring new profitable strata in mature exploration areas, strengthening the economic evaluation of sweet spots and focusing on the investment for high-profitability sweet spots, optimizing the producing of tight oil reserves by means of repetitive fracturing and 3 D fracturing, optimizing drilling and completion technologies to reduce the cost, adopting commodity hedging to ensure the sustainable profit, and strengthening other resources exploration to improve the profit of whole project. In light of the high abundance of tight oil in China, we can draw on successful experience from North America, four suggestions are proposed in sight of the geological setting of China's lacustrine tight oil:(1) Evaluating the potential of tight oil resources and optimizing the strategic area for tight oil exploration;(2) selecting "sweet spot zone" and "sweet spot interval" accurately for precise and high efficient development;(3) adopting advanced tight oil fracturing technology to realize economic development;(4) innovating management system to promote the large-scale profitable development of tight oil.展开更多
Jurassic tight oil in Sichuan Basin is chiefly distributed over the central basin with an area of about 4.2×10^4 km2. Since the first drilling in 1953, it has experienced four stages, including the Central Sichua...Jurassic tight oil in Sichuan Basin is chiefly distributed over the central basin with an area of about 4.2×10^4 km2. Since the first drilling in 1953, it has experienced four stages, including the Central Sichuan Basin Brought under Exploration and Development, Progressive Exploration and Development, Setting A Goal of 30×10^4 t/a, and Adjusting and Keeping A Stable Production.展开更多
Designing special well patterns, tridimensional reservoir development selects a variety of wells and uses the gravity energy to maximize the hydrocarbon recovery. It's a new development model to implement the oil ...Designing special well patterns, tridimensional reservoir development selects a variety of wells and uses the gravity energy to maximize the hydrocarbon recovery. It's a new development model to implement the oil and gas exploitation economically and efficiently. It is suitable for both huge oiliness altitude reservoirs and large dip-angle sandstone reservoirs, and more for the carbonate reservoirs developed in high-angle fractures, volcanic reservoirs and metamorphic reservoirs.展开更多
The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil ...The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil & gas resources.Unconventional oil & gas plays an increasingly important role in our energy demand.Tight gas,CBM,heavy oil and asphaltic sand have served as a key domain of exploration & development,with tight oil becoming a 'bright spot' domain and shale gas becoming a 'hotspot' domain.China has made great breakthroughs in unconventional oil & gas resources,such as tight gas,shale gas,tight oil and CBM,and great progress in oil shale,gas hydrate,heavy oil and oil sand.China has an estimated(223-263)×10~8t of unconventional oil resources and(890-1260)×l0^(12)m^3 of gas resources.China has made a breakthrough for progress in unconventional oil & gas study.New progress achieved in fine-grained sedimentary studies related to continental open lacustrine basin large-scale shallow-water delta sand bodies,lacustrine basin central sandy clastic flow sediments and marine-continental fine-grained sediments provide a theoretical basis for the formation and distribution of basin central reservoir bodies.Great breakthroughs have been made in unconventional reservoir geology in respect of research methodology & technology,multi-scale data merging and physical simulation of formation conditions.Overall characterization of unconventional reservoirs via multi-method and multi-scale becomes increasingly popular and facilitates the rapid development of unconventional oil & gas geological theory,method and technology.The formation of innovative,continuous hydrocarbon accumulation theory,the establishment of the framework of the unconventional oil & gas geological theory system,and the determination of the implications,geological feature,formation mechanism,distribution rule and core technology of unconventional oil& gas geological study lays a theoretical foundation for extensive unconventional oil & gas exploration and development.Theories and technologies of unconventional oil & gas exploration and development developed rapidly,including some key evaluation techniques such as 'sweet spot zone' integrated evaluation and a six-property evaluation technique that uses hydrocarbon source,lithology,physical property,brittleness,hydrocarbon potential and stress anisotropy,and some key development &engineering technologies including micro-seismic monitoring,horizontal drilling & completion and "factory-like" operation pattern, "man-made reservoir" development,which have facilitated the innovative development of unconventional oil & gas.These breakthroughs define a new understanding in four aspects:①theoretical innovation;② key technologies;③ complete market mechanism and national policy support;and ④ well-developed ground infrastructure,which are significant for prolonging the life cycle of petroleum industry,accelerating the upgrade and development of theories and technologies and altering the global traditional energy structure.展开更多
This work extensively investigated global tight sandstone gas, and geologically and geochemically analyzed the tight sandstone gas in China's Ordos, Sichuan, and Tarim basins. We compared typical tight sandstone gas ...This work extensively investigated global tight sandstone gas, and geologically and geochemically analyzed the tight sandstone gas in China's Ordos, Sichuan, and Tarim basins. We compared typical tight sandstone gas in China with that in North America. We proposed six conditions for the formation of China's tight sandstone gas, and illustrated the geological characteristics of tight sandstone gas. In China, gas-bearing tight sandstones were mainly deposited in continental lake deltas and marine-terrigenous facies basin environments, associated with coal-measure strata, and were mostly buried deeper than 2000 in under a formation pressure of 20-30 MPa, with pressure coefficients varying from overpressure to negative pressure. In other countries, tight gas bearing sandstones were dominantly deposited in marine to marine-terrigenous facies environments, occurred in coal-measure strata, and were mostly buried shallower than 2000 m in low-pressure systems. We systematically analyzed tight sandstone gas in the Ordos, Sichuan, and Tarim basins in terms of chemical compositions, geochemical characteristics of carbon isotopes, origins, and sources. Tight sandstone gas in China usually has a hydrocarbon content of 〉95%, with CH4 content 〉90%, and a generally higher dry coefficient. In the three above-mentioned large tight sandstone gas regions,δ13C1 and δJ3C2 mainly ranges from -42%o to -28%o and from -28%o to -21%o, respectively. Type III coal-measure source rocks that closely coexist with tight reservoirs are developed extensively in these gas regions. The organic petrology of source rocks and the carbon isotope compositions of gas indicate that tight sandstone gas in China is dominantly coal-derived gas generated by coal-measure strata. Our analysis of carbon isotope series shows that local isotope reversals are mainly caused by the mixing of gases of different maturities and that were generated at different stages. With increasing maturity, the reversal tendency becomes more apparent. Moreover, natural gas with medium-low maturity (e.g., Xujiahe Formation natural gas in the Sichuan Basin) presents an apparent reversal at a low-maturity stage, a normal series at a medium -maturity stage, and a reversal tendency again at a high-maturity stage. Finally, we proposed four conditions for preferred tight sandstone gas "sweep spots," and illustrated the recoverable reserves, proven reserves, production, and exploration prospects of tight sandstone gas. The geological and geochemical characteristics, origins, sources, and exploration potential of tight sandstone gas in China from our research will be instructive for the future evaluation, prediction, and exploration of tight sandstone gas in China and abroad.展开更多
Based on the transitional background of the global energy structure, exploration and development of unconventional oil and gas, and investigation of key basins, the unconventional oil and gas resources are divided int...Based on the transitional background of the global energy structure, exploration and development of unconventional oil and gas, and investigation of key basins, the unconventional oil and gas resources are divided into three types: source rock oil and gas, tight oil and gas, and retention and accumulated oil and gas. Source rock oil and gas resources are the global strategic supplies of oil and gas, the key resource components in the second 150-year life cycle of the future petroleum industry, and the primary targets for "exploring petroleum inside source kitchen". The geological connotation of source rock oil and gas was proposed, and the models of source rock oil and gas generation, expulsion and accumulation were built, and five source rock oil and gas generation sections were identified, which may determine the actual resource potential under available technical conditions. The formation mechanism of the "sweet sections" was investigated, that is, shale oil is mainly accumulated in the shale section that is close to the oil generation section and has higher porosity and permeability, while the "sweet sections" of coal-bed methane(CBM) and shale gas have self-contained source and reservoir and they are absorbed in coal seams or retained in the organic-rich black shale section, so evaluation and selection of good "sweet areas(sections)" is the key to "exploring petroleum inside source kitchen". Source rock oil and gas resources have a great potential and will experience a substantial growth for over ten world-class large "coexistence basins" of conventional-unconventional oil and gas in the future following North America, and also will be the primary contributor to oil stable development and the growth point of natural gas production in China, with expected contribution of 15% and 30% to oil and gas, respectively, in 2030. Challenges in source rock oil and gas development should be paid more attention to, theoretical innovation is strongly recommended, and a development pilot zone can be established to strengthen technology and promote national support. The source rock oil and gas geology is the latest progress of the "source control theory" at the stage of unconventional oil and gas. It will provide a new theoretical basis for the new journey of the upstream business in the post-industry age.展开更多
1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
In recent years, natural gas exploration in the Sinian Dengying Formation and shale gas exploration in Doushantuo Formation have made major breakthroughs in the Sichuan Basin and its adjacent areas. However, the sedim...In recent years, natural gas exploration in the Sinian Dengying Formation and shale gas exploration in Doushantuo Formation have made major breakthroughs in the Sichuan Basin and its adjacent areas. However, the sedimentary background of the Doushantuo Formation hasn't been studied systematically. The lithofacies paleogeographic pattern, sedimentary environment, sedimentary evolution and distribution of source rocks during the depositional stage of Doushantuo Formation were systematically analyzed by using a large amount of outcrop data, and a small amount of drilling and seismic data.(1) The sedimentary sequence and stratigraphic distribution of the Sinian Doushantuo Formation in the middle-upper Yangtze region were controlled by paleouplifts and marginal sags. The Doushantuo Formation in the paleouplift region was overlayed with thin thickness, including shore facies, mixed continental shelf facies and atypical carbonate platform facies. The marginal sag had complete strata and large thickness, and developed deep water shelf facies and restricted basin facies.(2) The Doushantuo Formation is divided into four members from bottom to top, and the sedimentary sequence is a complete sedimentary cycle of transgression–high position–regression. The first member is atypical carbonate gentle slope deposit in the early stage of the transgression, the second member is shore-mixed shelf deposit in the extensive transgression period, and the third member is atypical restricted–open sea platform deposit of the high position of the transgression.(3) The second member has organic-rich black shale developed with stable distribution and large thickness, which is an important source rock interval and major shale gas interval. The third member is characterized by microbial carbonate rock and has good storage conditions which is conducive to the accumulation of natural gas, phosphate and other mineral resources, so it is a new area worthy of attention. The Qinling trough and western Hubei trough are favorable areas for exploration of natural gas(including shale gas) and mineral resources such as phosphate and manganese ore.展开更多
China's continental oil and gas geological theory occupies an important academic position in the world's academic circle of petroleum geology. China's oil and gas resources are dominated by continental res...China's continental oil and gas geological theory occupies an important academic position in the world's academic circle of petroleum geology. China's oil and gas resources are dominated by continental resources. Chinese geologists have successfully explored and developed complex continental oil and gas, and developed a continental oil and gas geological theory system. This paper summarizes the development history and theoretical achievements of continental oil and gas geological theory since the 1940 s and proposes that the development of this theory should be divided into three stages(i.e., proposal, formation and development). The China's continental oil and gas geological theory has formed a basically perfect theoretical system consisting of five parts, i.e., continental basin structure theory, continental basin sediments and reservoirs theory, continental oil generation theory, continental oil and gas accumulation theory, and continental sandstone oil and gas field development geology. As an advanced geological theory, it has a universal significance globally. This paper focuses on the major discoveries of oil and gas exploration and development and the production growth in the basins of the Central and Western China in the past 30 years as well as the major advances in the continental oil and gas geological theory, including the continental basin tectonics of Central and Western China under the compression background, special reservoir geology such as various types of lake basin sedimentary systems and deep conglomerate, new fields of continental hydrocarbon generation such as coal-generated hydrocarbons, continental oil and gas enrichment regularity such as foreland thrust belts and lithologic-stratigraphic reservoirs, continental unconventional oil and gas geology and continental low-permeability oil and gas development geology. These major advances have greatly developed and enriched the continental oil and gas geological theory and become an important part of it.展开更多
The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based...The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies.展开更多
As technologies advance in oilfield development, mature oilfields are able to keep sustainable production and complex oilfields difficult to produce in the past are put into production efficiently. In this work, new p...As technologies advance in oilfield development, mature oilfields are able to keep sustainable production and complex oilfields difficult to produce in the past are put into production efficiently. In this work, new progresses of main development technologies for medium-high permeability and high water cut, low permeability, heavy oil, complex faulted block and special lithology reservoirs in the past decade, especially those international achievements made in enhanced oil recovery, were summarized, the key problems and major challenges that different oilfields are facing were analyzed, and the development route and direction of three-generation technologies were proposed as "mature technology in industrialized application, key technology in pilot test and innovative technology for backup". The key research contents should focus on:(1) Fine water flooding and chemical flooding for mature oilfields, improving oil recovery after chemical flooding, and gas flooding for low permeability reservoirs must be researched and tested in field further.(2) Study on subversive technologies like nanometer smart flooding, in-situ upgrading and injection and production through the same well should be strengthened.(3) EOR technologies for low oil price, new fields(deep sea, deep layer, unconventional reservoirs etc.) and highly difficult conditions(the quaternary recovery after chemical flooding, tertiary recovery in ultra-low permeability reservoirs) should be stocked up in advance. The development cost must be lowered significantly through constant innovation in technology and reservoir management to realize sustainable development of oilfields.展开更多
Through the research on several carbonate reservoirs developed in the Middle East, the basic characteristics of different types of carbonate reservoirs are determined, and a set of high-efficiency water injection deve...Through the research on several carbonate reservoirs developed in the Middle East, the basic characteristics of different types of carbonate reservoirs are determined, and a set of high-efficiency water injection development options and strategies are presented. Hidden baffles and barriers exist in carbonate reservoirs in the Middle East, so the reservoirs could be divided into different separated development units based on the baffles and barriers characteristics. Flexible and diverse profile control techniques such as high angle wells and simple and applicative zonal water injection have been introduced to improve the control and development degree of reservoirs. Three principal water injection development methods suitable for different carbonate reservoirs in the Middle East are proposed, including the combination of crestal gas injection and peripheral water injection, bottom interval injection and top interval production(buoyancy underpinning), and "weak point and strong plane" area well pattern. Based on the characteristics of very low shale content, fast and far pressure transmission in the Middle East carbonate reservoirs, a large well-spacing flood pattern is recommended, and reasonable development strategies have been made such as moderate water injection rate and maintaining reasonable production pressure drawdown and voidage replacement ratio, so as to maximize the recovery of reservoirs in the none or low water cut period.展开更多
Based on the analysis of influencing factors of tight gas recovery and reservoir geological characteristics, the types of remaining tight gas reserves in the Sulige gas field are summarized from the perspective of res...Based on the analysis of influencing factors of tight gas recovery and reservoir geological characteristics, the types of remaining tight gas reserves in the Sulige gas field are summarized from the perspective of residual gas genesis to estimate residual gas reserves of different types and provide corresponding technical strategies for enhancing gas recovery. The residual gas reserves in the Sulige gas field can be divided into four types: well pattern uncontrollable, horizontal well missing, imperfect perforation, blocking zone in composite sandbodies. Among them, the uncontrolled remaining gas of well pattern and blocking zone in composite sandbodies are the main body for tapping potential and improving recovery factor, and well pattern infilling adjustment is the main means. Taking into account reservoir geological characteristics, production dynamic response and economic benefit requirements, four methods for infilling vertical well pattern, i.e., quantitative geological model method, dynamic controlled range of gas well method, production interference method and economic and technical index evaluation method, as well as a design method of combined vertical well pattern with horizontal well pattern are established. Under certain economic and technological conditions, the reasonable well pattern density of enrichment zone of gas field is proved to be 4 wells per square kilometers, which can increase the recovery rate of the gas field from 32% to about 50%. Meanwhile, five matching techniques for enhancing gas recovery aimed at interlayer undeveloped residual gas have been formed, including tapping potential of old wells, technological technology optimizing of new wells, rational production system optimizing, drainage and gas producing, and reducing waste production, which could increase the recovery rate for 5% based on well pattern infilling. The research results provide effective support for the long-term stable production of 230×108 m3/a of the Sulige gas field and production growth in the Changqing gas area.展开更多
Well Gaotan 1 was tested a high yield oil and gas flow of more than 1 000 m^3 a day in the Cretaceous Qingshuihe Formation,marking a major breakthrough in the lower assemblage of the southern margin of Junggar Basin. ...Well Gaotan 1 was tested a high yield oil and gas flow of more than 1 000 m^3 a day in the Cretaceous Qingshuihe Formation,marking a major breakthrough in the lower assemblage of the southern margin of Junggar Basin. The lower assemblage in the southern margin of the Junggar Basin has favorable geological conditions for forming large Petroleum fields, including:(1) Multiple sets of source rocks, of which the Jurassic and Permian are the main source rocks, with a large source kitchen.(2) Multiple sets of effective reservoirs,namely Cretaceous Qingshuihe Formation, Jurassic Toutunhe Formation and the Khalza Formation etc.(3) Regional thick mudstone caprock of Cretaceous Tugulu Group, generally with abnormally high pressure and good sealing ability.(4) Giant structural traps and litho-stratigraphic traps are developed. The northern slope also has the conditions for large-scale litho-stratigraphic traps.(5) Static elements such as source rocks, reservoirs and caprocks are well matched, and the dynamic evolution is suitable for large oil and gas accumulation. The lower assemblage of the southern margin of the Junggar Basin has three favorable exploration directions, the Sikeshu Sag in the west part, the large structures in the middle and eastern part, and the northern slope.展开更多
Based on the Late Paleozoic geological background and the latest exploration achievements of the Ordos Basin and North China platform, it is concluded that during the sedimentary period of Permian He 8 Member, the are...Based on the Late Paleozoic geological background and the latest exploration achievements of the Ordos Basin and North China platform, it is concluded that during the sedimentary period of Permian He 8 Member, the area in concern had multiple material sources, multiple river systems, flat terrain, shallow sedimentary water, widely distributed fluvial facies sand body and no continuous lake area, so alluvial river sedimentary system developed in the whole region. Based on stratigraphic correlation and division, and a large number of drilling and outcrop data, a comprehensive analysis of lithofacies and sedimentary facies types and distribution was carried out to reconstruct the ancient geographic pattern of the He 8 Member sedimentary period. The results of paleogeography restoration show that the area of Ordos Basin was the "runoff area" in the sedimentary slope in the western part of the North China platform during the sedimentary period of He 8 Member, the whole region was mainly alluvial plain sedimentation featuring alternate fluvial facies, flood plain facies and flood-plain lake facies. According to the results of flume deposition simulation experiment, a new sedimentary model of "alluvial river & flood-plain lake" is established, which reveals the genesis of large area gravel sand body in He 8 Member of this area and provides geological basis for the exploration of tight gas in the south of the basin.展开更多
Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the chall...Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.展开更多
Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESE...Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESEM)and quantitative examination of pore size and geometry using mercury injection,nano-CT and nitrogen adsorption,reservoir rock of Da’anzhai Member were divided into 9 types,while storage spaces were divided into 4 types and 14 sub-types.The study shows that sparry coquina is the most promising reservoir type.Pores that smaller than 1μm in diameter contribute 91.27%of storage space volume.Most of them exhibit slot-like geometry with good connectivity.By building up storage space models,it was revealed that micron scale storage spaces mainly composed of fractures and nanometer scale pores and fractures form multi-scale dual porosity system.Low resource abundance,small single well controlled reserve,and low production are related to the nano-scale pore space in Da’anzhai Memer,whereas the dual-porosity system composed of pores and fractures makes for long-term oil yield.Due to the existence of abundant slot-like pore space and fractures,economic tight oil production was achieved without stimulations.展开更多
This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure d...This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining.展开更多
基金sponsored by the National Key Basic Research Program of China (973 Program, 2014CB239000, 2009CB219304)National Science and Technology Major Project (2011ZX05001)
文摘Characterized by complex lithology and strong heterogeneity, volcanic reservoirs in China developed three reservoir space types: primary pores, secondary pores and fractures. The formation of reservoir space went through the cooling and solidification stage (including blast fragmentation, crystallization differentiation and solidification) and the epidiagenesis stage (including metasomatism, filling, weathering and leaching, formation fluid dissolution and tectonism). Primary pores were formed at the solidification stage, which laid the foundation for the development and transformation of effective reservoirs. Secondary pores were formed at the epidiagenesis stage, with key factors as weathering and leaching, formation fluid dissolution and tectonism. In China, Mesozoic-Cenozoic volcanic rocks developed in the Songliao Basin and Bohai Bay Basin in the east and Late Paleozoic volcanic rocks developed in the Junggar Basin, Santanghu Basin and Ta- rim Basin in the west. There are primary volcanic reser- voirs and secondary volcanic reservoirs in these volcanic rocks, which have good accumulation conditions and great exploration potential.
基金Supported by the China National Science and Technology Major Project(2016ZX05004)
文摘The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian.Based on the reconstruction of tectonic setting and the analysis of major geological events in Mesoproterozoic-Neoproterozoic,the petroleum geological conditions of Proterozoic to Cambrian are discussed in this paper from three aspects,i.e.source rocks,reservoir conditions,and the type and efficiency of play.It is found that lower organisms boomed in the interglacial epoch from Mesoproterozoic-Neoproterozoic to Eopaleozoic when the organic matters concentrated and high quality source rocks formed.Sinian-Cambrian microbial rock and grain-stone banks overlapped with multiple-period constructive digenesis may form large-scale reservoir rocks.However,because of the anoxic event and weak weathering effect in Eopaleozoic-Mesoproterozoic,the reservoirs are generally poor in quality,and only the reservoirs that suffered weathering and leaching may have the opportunity to form dissolution-reconstructed reservoirs.There are large rifts formed during Mesoproterozoic-Neoproterozoic in Huabei Craton,Yangtze Craton,and Tarim Craton in China,and definitely source rocks in the rifts,while whether there are favorite source-reservoir plays depends on circumstance.The existence of Sinian-Cambrian effective play has been proved in Upper Yangtze area.The effectiveness of source-reservoir plays in Huabei area depends on two factors:(1)the effectiveness of secondary play formed by Proterozoic source rock and Paleozoic,Mesozoic,Cenozoic reservoir rocks;(2)the matching between reservoirs formed by reconstruction from Mesoproterozoic-Neoproterozoic to Eopaleozoic and the inner hydrocarbon kitchens with late hydrocarbon generation.As for Tarim Basin,the time of Proterozoic and the original basin should be analyzed before the evaluation of the effective play.To sum up,Proterozoic to Cambrian in the three craton basins in China is a potential exploration formation,which deserves further investigation and research.
基金Supported by the China National Science and Technology Major Project(2016ZX05046,2017ZX05001)the National Key Basic Research and Development Program(973 Program),China(2014CB239000)
文摘Based on the investigation of tight oil exploration and development in North America, the successful cases of tight oil exploration and development in North America are summarized. The geological differences between continental tight oil in China and marine tight oil in North America is analyzed to explore the technical strategies for the industrial development of continental tight oil in China. The experiences of large-scale exploration and profitable development of tight oil in North America can be taken as references from the following 6 perspectives, namely exploring new profitable strata in mature exploration areas, strengthening the economic evaluation of sweet spots and focusing on the investment for high-profitability sweet spots, optimizing the producing of tight oil reserves by means of repetitive fracturing and 3 D fracturing, optimizing drilling and completion technologies to reduce the cost, adopting commodity hedging to ensure the sustainable profit, and strengthening other resources exploration to improve the profit of whole project. In light of the high abundance of tight oil in China, we can draw on successful experience from North America, four suggestions are proposed in sight of the geological setting of China's lacustrine tight oil:(1) Evaluating the potential of tight oil resources and optimizing the strategic area for tight oil exploration;(2) selecting "sweet spot zone" and "sweet spot interval" accurately for precise and high efficient development;(3) adopting advanced tight oil fracturing technology to realize economic development;(4) innovating management system to promote the large-scale profitable development of tight oil.
基金funded project from the Petro China Major Scientific and Technological Project(Number:2012E-2601-02).Project Name:Key Technology of Exploration and Development for Jurassic Tight oil,Sichuan Basin
文摘Jurassic tight oil in Sichuan Basin is chiefly distributed over the central basin with an area of about 4.2×10^4 km2. Since the first drilling in 1953, it has experienced four stages, including the Central Sichuan Basin Brought under Exploration and Development, Progressive Exploration and Development, Setting A Goal of 30×10^4 t/a, and Adjusting and Keeping A Stable Production.
文摘Designing special well patterns, tridimensional reservoir development selects a variety of wells and uses the gravity energy to maximize the hydrocarbon recovery. It's a new development model to implement the oil and gas exploitation economically and efficiently. It is suitable for both huge oiliness altitude reservoirs and large dip-angle sandstone reservoirs, and more for the carbonate reservoirs developed in high-angle fractures, volcanic reservoirs and metamorphic reservoirs.
基金Funded by the National Key Basic Research and Development Program(973 Program),China(Grant 2014CB239000)China National Science and Technology Major Project(Grant 2011ZX05001)
文摘The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil & gas resources.Unconventional oil & gas plays an increasingly important role in our energy demand.Tight gas,CBM,heavy oil and asphaltic sand have served as a key domain of exploration & development,with tight oil becoming a 'bright spot' domain and shale gas becoming a 'hotspot' domain.China has made great breakthroughs in unconventional oil & gas resources,such as tight gas,shale gas,tight oil and CBM,and great progress in oil shale,gas hydrate,heavy oil and oil sand.China has an estimated(223-263)×10~8t of unconventional oil resources and(890-1260)×l0^(12)m^3 of gas resources.China has made a breakthrough for progress in unconventional oil & gas study.New progress achieved in fine-grained sedimentary studies related to continental open lacustrine basin large-scale shallow-water delta sand bodies,lacustrine basin central sandy clastic flow sediments and marine-continental fine-grained sediments provide a theoretical basis for the formation and distribution of basin central reservoir bodies.Great breakthroughs have been made in unconventional reservoir geology in respect of research methodology & technology,multi-scale data merging and physical simulation of formation conditions.Overall characterization of unconventional reservoirs via multi-method and multi-scale becomes increasingly popular and facilitates the rapid development of unconventional oil & gas geological theory,method and technology.The formation of innovative,continuous hydrocarbon accumulation theory,the establishment of the framework of the unconventional oil & gas geological theory system,and the determination of the implications,geological feature,formation mechanism,distribution rule and core technology of unconventional oil& gas geological study lays a theoretical foundation for extensive unconventional oil & gas exploration and development.Theories and technologies of unconventional oil & gas exploration and development developed rapidly,including some key evaluation techniques such as 'sweet spot zone' integrated evaluation and a six-property evaluation technique that uses hydrocarbon source,lithology,physical property,brittleness,hydrocarbon potential and stress anisotropy,and some key development &engineering technologies including micro-seismic monitoring,horizontal drilling & completion and "factory-like" operation pattern, "man-made reservoir" development,which have facilitated the innovative development of unconventional oil & gas.These breakthroughs define a new understanding in four aspects:①theoretical innovation;② key technologies;③ complete market mechanism and national policy support;and ④ well-developed ground infrastructure,which are significant for prolonging the life cycle of petroleum industry,accelerating the upgrade and development of theories and technologies and altering the global traditional energy structure.
基金supported by the Petro China Major Scientific and Technical Project (No.: 2014B-0608)the National Science and Technology Major Project of China (NO.: 2011ZX5001-001)
文摘This work extensively investigated global tight sandstone gas, and geologically and geochemically analyzed the tight sandstone gas in China's Ordos, Sichuan, and Tarim basins. We compared typical tight sandstone gas in China with that in North America. We proposed six conditions for the formation of China's tight sandstone gas, and illustrated the geological characteristics of tight sandstone gas. In China, gas-bearing tight sandstones were mainly deposited in continental lake deltas and marine-terrigenous facies basin environments, associated with coal-measure strata, and were mostly buried deeper than 2000 in under a formation pressure of 20-30 MPa, with pressure coefficients varying from overpressure to negative pressure. In other countries, tight gas bearing sandstones were dominantly deposited in marine to marine-terrigenous facies environments, occurred in coal-measure strata, and were mostly buried shallower than 2000 m in low-pressure systems. We systematically analyzed tight sandstone gas in the Ordos, Sichuan, and Tarim basins in terms of chemical compositions, geochemical characteristics of carbon isotopes, origins, and sources. Tight sandstone gas in China usually has a hydrocarbon content of 〉95%, with CH4 content 〉90%, and a generally higher dry coefficient. In the three above-mentioned large tight sandstone gas regions,δ13C1 and δJ3C2 mainly ranges from -42%o to -28%o and from -28%o to -21%o, respectively. Type III coal-measure source rocks that closely coexist with tight reservoirs are developed extensively in these gas regions. The organic petrology of source rocks and the carbon isotope compositions of gas indicate that tight sandstone gas in China is dominantly coal-derived gas generated by coal-measure strata. Our analysis of carbon isotope series shows that local isotope reversals are mainly caused by the mixing of gases of different maturities and that were generated at different stages. With increasing maturity, the reversal tendency becomes more apparent. Moreover, natural gas with medium-low maturity (e.g., Xujiahe Formation natural gas in the Sichuan Basin) presents an apparent reversal at a low-maturity stage, a normal series at a medium -maturity stage, and a reversal tendency again at a high-maturity stage. Finally, we proposed four conditions for preferred tight sandstone gas "sweep spots," and illustrated the recoverable reserves, proven reserves, production, and exploration prospects of tight sandstone gas. The geological and geochemical characteristics, origins, sources, and exploration potential of tight sandstone gas in China from our research will be instructive for the future evaluation, prediction, and exploration of tight sandstone gas in China and abroad.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2014CB239000)China National Science and Technology Major Project(2016ZX05046)
文摘Based on the transitional background of the global energy structure, exploration and development of unconventional oil and gas, and investigation of key basins, the unconventional oil and gas resources are divided into three types: source rock oil and gas, tight oil and gas, and retention and accumulated oil and gas. Source rock oil and gas resources are the global strategic supplies of oil and gas, the key resource components in the second 150-year life cycle of the future petroleum industry, and the primary targets for "exploring petroleum inside source kitchen". The geological connotation of source rock oil and gas was proposed, and the models of source rock oil and gas generation, expulsion and accumulation were built, and five source rock oil and gas generation sections were identified, which may determine the actual resource potential under available technical conditions. The formation mechanism of the "sweet sections" was investigated, that is, shale oil is mainly accumulated in the shale section that is close to the oil generation section and has higher porosity and permeability, while the "sweet sections" of coal-bed methane(CBM) and shale gas have self-contained source and reservoir and they are absorbed in coal seams or retained in the organic-rich black shale section, so evaluation and selection of good "sweet areas(sections)" is the key to "exploring petroleum inside source kitchen". Source rock oil and gas resources have a great potential and will experience a substantial growth for over ten world-class large "coexistence basins" of conventional-unconventional oil and gas in the future following North America, and also will be the primary contributor to oil stable development and the growth point of natural gas production in China, with expected contribution of 15% and 30% to oil and gas, respectively, in 2030. Challenges in source rock oil and gas development should be paid more attention to, theoretical innovation is strongly recommended, and a development pilot zone can be established to strengthen technology and promote national support. The source rock oil and gas geology is the latest progress of the "source control theory" at the stage of unconventional oil and gas. It will provide a new theoretical basis for the new journey of the upstream business in the post-industry age.
基金supported by funding the National Basic Research Program of China (973 Program) and the grant number is 2014CB239000
文摘1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
基金Supportd by the China National Science and Technology Major Project(2016ZX05004-001)
文摘In recent years, natural gas exploration in the Sinian Dengying Formation and shale gas exploration in Doushantuo Formation have made major breakthroughs in the Sichuan Basin and its adjacent areas. However, the sedimentary background of the Doushantuo Formation hasn't been studied systematically. The lithofacies paleogeographic pattern, sedimentary environment, sedimentary evolution and distribution of source rocks during the depositional stage of Doushantuo Formation were systematically analyzed by using a large amount of outcrop data, and a small amount of drilling and seismic data.(1) The sedimentary sequence and stratigraphic distribution of the Sinian Doushantuo Formation in the middle-upper Yangtze region were controlled by paleouplifts and marginal sags. The Doushantuo Formation in the paleouplift region was overlayed with thin thickness, including shore facies, mixed continental shelf facies and atypical carbonate platform facies. The marginal sag had complete strata and large thickness, and developed deep water shelf facies and restricted basin facies.(2) The Doushantuo Formation is divided into four members from bottom to top, and the sedimentary sequence is a complete sedimentary cycle of transgression–high position–regression. The first member is atypical carbonate gentle slope deposit in the early stage of the transgression, the second member is shore-mixed shelf deposit in the extensive transgression period, and the third member is atypical restricted–open sea platform deposit of the high position of the transgression.(3) The second member has organic-rich black shale developed with stable distribution and large thickness, which is an important source rock interval and major shale gas interval. The third member is characterized by microbial carbonate rock and has good storage conditions which is conducive to the accumulation of natural gas, phosphate and other mineral resources, so it is a new area worthy of attention. The Qinling trough and western Hubei trough are favorable areas for exploration of natural gas(including shale gas) and mineral resources such as phosphate and manganese ore.
文摘China's continental oil and gas geological theory occupies an important academic position in the world's academic circle of petroleum geology. China's oil and gas resources are dominated by continental resources. Chinese geologists have successfully explored and developed complex continental oil and gas, and developed a continental oil and gas geological theory system. This paper summarizes the development history and theoretical achievements of continental oil and gas geological theory since the 1940 s and proposes that the development of this theory should be divided into three stages(i.e., proposal, formation and development). The China's continental oil and gas geological theory has formed a basically perfect theoretical system consisting of five parts, i.e., continental basin structure theory, continental basin sediments and reservoirs theory, continental oil generation theory, continental oil and gas accumulation theory, and continental sandstone oil and gas field development geology. As an advanced geological theory, it has a universal significance globally. This paper focuses on the major discoveries of oil and gas exploration and development and the production growth in the basins of the Central and Western China in the past 30 years as well as the major advances in the continental oil and gas geological theory, including the continental basin tectonics of Central and Western China under the compression background, special reservoir geology such as various types of lake basin sedimentary systems and deep conglomerate, new fields of continental hydrocarbon generation such as coal-generated hydrocarbons, continental oil and gas enrichment regularity such as foreland thrust belts and lithologic-stratigraphic reservoirs, continental unconventional oil and gas geology and continental low-permeability oil and gas development geology. These major advances have greatly developed and enriched the continental oil and gas geological theory and become an important part of it.
文摘The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies.
文摘As technologies advance in oilfield development, mature oilfields are able to keep sustainable production and complex oilfields difficult to produce in the past are put into production efficiently. In this work, new progresses of main development technologies for medium-high permeability and high water cut, low permeability, heavy oil, complex faulted block and special lithology reservoirs in the past decade, especially those international achievements made in enhanced oil recovery, were summarized, the key problems and major challenges that different oilfields are facing were analyzed, and the development route and direction of three-generation technologies were proposed as "mature technology in industrialized application, key technology in pilot test and innovative technology for backup". The key research contents should focus on:(1) Fine water flooding and chemical flooding for mature oilfields, improving oil recovery after chemical flooding, and gas flooding for low permeability reservoirs must be researched and tested in field further.(2) Study on subversive technologies like nanometer smart flooding, in-situ upgrading and injection and production through the same well should be strengthened.(3) EOR technologies for low oil price, new fields(deep sea, deep layer, unconventional reservoirs etc.) and highly difficult conditions(the quaternary recovery after chemical flooding, tertiary recovery in ultra-low permeability reservoirs) should be stocked up in advance. The development cost must be lowered significantly through constant innovation in technology and reservoir management to realize sustainable development of oilfields.
文摘Through the research on several carbonate reservoirs developed in the Middle East, the basic characteristics of different types of carbonate reservoirs are determined, and a set of high-efficiency water injection development options and strategies are presented. Hidden baffles and barriers exist in carbonate reservoirs in the Middle East, so the reservoirs could be divided into different separated development units based on the baffles and barriers characteristics. Flexible and diverse profile control techniques such as high angle wells and simple and applicative zonal water injection have been introduced to improve the control and development degree of reservoirs. Three principal water injection development methods suitable for different carbonate reservoirs in the Middle East are proposed, including the combination of crestal gas injection and peripheral water injection, bottom interval injection and top interval production(buoyancy underpinning), and "weak point and strong plane" area well pattern. Based on the characteristics of very low shale content, fast and far pressure transmission in the Middle East carbonate reservoirs, a large well-spacing flood pattern is recommended, and reasonable development strategies have been made such as moderate water injection rate and maintaining reasonable production pressure drawdown and voidage replacement ratio, so as to maximize the recovery of reservoirs in the none or low water cut period.
基金Supported by the China National Science and Technology Major Project(2016ZX05047)
文摘Based on the analysis of influencing factors of tight gas recovery and reservoir geological characteristics, the types of remaining tight gas reserves in the Sulige gas field are summarized from the perspective of residual gas genesis to estimate residual gas reserves of different types and provide corresponding technical strategies for enhancing gas recovery. The residual gas reserves in the Sulige gas field can be divided into four types: well pattern uncontrollable, horizontal well missing, imperfect perforation, blocking zone in composite sandbodies. Among them, the uncontrolled remaining gas of well pattern and blocking zone in composite sandbodies are the main body for tapping potential and improving recovery factor, and well pattern infilling adjustment is the main means. Taking into account reservoir geological characteristics, production dynamic response and economic benefit requirements, four methods for infilling vertical well pattern, i.e., quantitative geological model method, dynamic controlled range of gas well method, production interference method and economic and technical index evaluation method, as well as a design method of combined vertical well pattern with horizontal well pattern are established. Under certain economic and technological conditions, the reasonable well pattern density of enrichment zone of gas field is proved to be 4 wells per square kilometers, which can increase the recovery rate of the gas field from 32% to about 50%. Meanwhile, five matching techniques for enhancing gas recovery aimed at interlayer undeveloped residual gas have been formed, including tapping potential of old wells, technological technology optimizing of new wells, rational production system optimizing, drainage and gas producing, and reducing waste production, which could increase the recovery rate for 5% based on well pattern infilling. The research results provide effective support for the long-term stable production of 230×108 m3/a of the Sulige gas field and production growth in the Changqing gas area.
基金Supported by the PetroChina Exploration&Production Company Project(kt2018-03-01)
文摘Well Gaotan 1 was tested a high yield oil and gas flow of more than 1 000 m^3 a day in the Cretaceous Qingshuihe Formation,marking a major breakthrough in the lower assemblage of the southern margin of Junggar Basin. The lower assemblage in the southern margin of the Junggar Basin has favorable geological conditions for forming large Petroleum fields, including:(1) Multiple sets of source rocks, of which the Jurassic and Permian are the main source rocks, with a large source kitchen.(2) Multiple sets of effective reservoirs,namely Cretaceous Qingshuihe Formation, Jurassic Toutunhe Formation and the Khalza Formation etc.(3) Regional thick mudstone caprock of Cretaceous Tugulu Group, generally with abnormally high pressure and good sealing ability.(4) Giant structural traps and litho-stratigraphic traps are developed. The northern slope also has the conditions for large-scale litho-stratigraphic traps.(5) Static elements such as source rocks, reservoirs and caprocks are well matched, and the dynamic evolution is suitable for large oil and gas accumulation. The lower assemblage of the southern margin of the Junggar Basin has three favorable exploration directions, the Sikeshu Sag in the west part, the large structures in the middle and eastern part, and the northern slope.
基金Supported by the China National Science and Technology Major Project(2011ZX05044,2011ZX05007-004)
文摘Based on the Late Paleozoic geological background and the latest exploration achievements of the Ordos Basin and North China platform, it is concluded that during the sedimentary period of Permian He 8 Member, the area in concern had multiple material sources, multiple river systems, flat terrain, shallow sedimentary water, widely distributed fluvial facies sand body and no continuous lake area, so alluvial river sedimentary system developed in the whole region. Based on stratigraphic correlation and division, and a large number of drilling and outcrop data, a comprehensive analysis of lithofacies and sedimentary facies types and distribution was carried out to reconstruct the ancient geographic pattern of the He 8 Member sedimentary period. The results of paleogeography restoration show that the area of Ordos Basin was the "runoff area" in the sedimentary slope in the western part of the North China platform during the sedimentary period of He 8 Member, the whole region was mainly alluvial plain sedimentation featuring alternate fluvial facies, flood plain facies and flood-plain lake facies. According to the results of flume deposition simulation experiment, a new sedimentary model of "alluvial river & flood-plain lake" is established, which reveals the genesis of large area gravel sand body in He 8 Member of this area and provides geological basis for the exploration of tight gas in the south of the basin.
基金Supported by the PetroChina Science and Technology Major Project(2019E-25)
文摘Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction.
基金Supported by the China National Science and Technology Major Project(2016ZX05046-001)
文摘Based on the qualitative study of microscopic reservoir features using core analysis,cast and fluorescence thin sections inspection,scanning electron microscope(SEM)and field emission scanning electron microscope(FESEM)and quantitative examination of pore size and geometry using mercury injection,nano-CT and nitrogen adsorption,reservoir rock of Da’anzhai Member were divided into 9 types,while storage spaces were divided into 4 types and 14 sub-types.The study shows that sparry coquina is the most promising reservoir type.Pores that smaller than 1μm in diameter contribute 91.27%of storage space volume.Most of them exhibit slot-like geometry with good connectivity.By building up storage space models,it was revealed that micron scale storage spaces mainly composed of fractures and nanometer scale pores and fractures form multi-scale dual porosity system.Low resource abundance,small single well controlled reserve,and low production are related to the nano-scale pore space in Da’anzhai Memer,whereas the dual-porosity system composed of pores and fractures makes for long-term oil yield.Due to the existence of abundant slot-like pore space and fractures,economic tight oil production was achieved without stimulations.
基金Supported by the National Natural Science Foundation of China(41602159)
文摘This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining.