期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mechanisms of shale hydration and water block removal 被引量:3
1
作者 ZENG Fanhui ZHANG Qiang +3 位作者 GUO Jianchun ZENG Bo ZHANG Yu HE Songgen 《Petroleum Exploration and Development》 CSCD 2021年第3期752-761,共10页
Shale samples of Silurian Longmaxi Formation in the Changning area of the Sichuan Basin, SW China, were selected to carry out scanning electron microscopy, CT imaging, high-pressure mercury injection, low-temperature ... Shale samples of Silurian Longmaxi Formation in the Changning area of the Sichuan Basin, SW China, were selected to carry out scanning electron microscopy, CT imaging, high-pressure mercury injection, low-temperature nitrogen adsorption and imbibition experiments to compare the hydration characteristics of montmorillonite and illite, analyze the main factors affecting the water block removal of shale, and reveal the mechanisms of pore structure evolution during shale hydration. The hydration characteristics of shale are closely related to the composition of clay minerals, the shale with high illite content is not susceptible to hydration and thus has limited room for pore structure improvement;the shale with high montmorillonite is susceptible to hydration expansion and thus has higher potential of pore structure improvement by stimulation;the shale with high illite content has stronger imbibition in the initial stage, but insufficient diffusion ability, and thus is likely to have water block;the shale with high montmorillonite content has weaker imbibition in the initial stage but better water diffusion, so water blocking in this kind of shale can be removed to some degree;the shale reservoir has an optimal hydration time, when it is best in physical properties, but hydration time too long would cause damage to the reservoir, and the shale with high illite content has a shorter optimal hydration time;inorganic cations can inhibit the hydration of clay minerals and have stronger inhibition to illite expansion, especially K^(+);for the reservoir with high content of montmorillonite, the cation content of fracturing fluid can be lowered to promote the shale hydration;fracturing fluid with high K^(+) content can be injected into reservoirs with high illite content to suppress hydration. 展开更多
关键词 SHALE clay minerals HYDRATION microscopic pore structure water block effect fracturing fluid diffusion optimal hydration time water block removal
下载PDF
Gas-in-Place(GIP) Variation and Main Controlling Factors for the Deep Wufeng-Longmaxi Shales in the Luzhou Area of the Southern Sichuan Basin,China
2
作者 Wei Wu Peng Cheng +7 位作者 Shenyang Liu Chao Luo Haifeng Gai Haitao Gao Qin Zhou Tengfei Li Kesu Zhong Hui Tian 《Journal of Earth Science》 SCIE CAS CSCD 2023年第4期1002-1011,共10页
The Wufeng-Longmaxi Formation shales with burial depths > 3 500 m in the southern Sichuan Basin are believed to have large shale gas potentials.However,the reservoir properties and gasin-place(GIP) contents of thes... The Wufeng-Longmaxi Formation shales with burial depths > 3 500 m in the southern Sichuan Basin are believed to have large shale gas potentials.However,the reservoir properties and gasin-place(GIP) contents of these shales exhibit variations across different sublayers.In this study,a set of Wufeng-Longmaxi shales with burial depths of 4 000–4 200 m was derived from the Well Y101H2 in the Luzhou area,and the differences in geological and geochemical characteristics,porosity,water saturation and GIP content of various sublayer shales were investigated.The results indicate that the TOC content and effective porosity of the upper(LMX1-4) and lower(LMX1-3) sublayer shales of the first member of the Longmaxi Formation are better than those of the Wufeng Formation(WF) shales,which results in the LMX1-4 and LMX1-3 shales having higher GIP contents than the WF shales.The GIP contents of the LMX1-3 shales are higher than those of the LMX1-4 shales,and this is likely because the organic matter of the LMX1-3 shales had more aquatic organisms and was preserved in a stronger reductive environment,which leads to a stronger gas generation potential.In contrast to the middle-shallow LMX1-4 shales in the Sichuan Basin,the deep LMX1-4 shales in the Luzhou area have advantageous reservoir properties and GIP contents,and thus it is promising to synchronously exploit the deep LMX1-4 and LMX1-3 shales in some regions of the southern Sichuan Basin. 展开更多
关键词 the Sichuan Basin Wufeng-Longmaxi Formation SHALES deep shales reservoir proper-ties GIPcontents.
原文传递
Evaluation on the anisotropic brittleness index of shale rock using geophysical logging
3
作者 Junchuan Gui Jianchun Guo +3 位作者 Yu Sang Yaxi Chen Tianshou Ma P.G.Ranjith 《Petroleum》 EI CSCD 2023年第4期545-557,共13页
The brittleness index plays a significant role in the hydraulic fracturing design and wellbore stability analysis of shale reservoirs.Various brittleness indices have been proposed to characterize the brittleness of s... The brittleness index plays a significant role in the hydraulic fracturing design and wellbore stability analysis of shale reservoirs.Various brittleness indices have been proposed to characterize the brittleness of shale rocks,but almost all of them ignored the anisotropy of the brittleness index.Therefore,uniaxial compression testing integrated with geophysical logging was used to provide insights into the anisotropy of the brittleness index for Longmaxi shale,the presented method was utilized to assess brittleness index of Longmaxi shale formation for the interval of 3155e3175 m in CW-1 well.The results indicated that the brittleness index of Longmaxi shale showed a distinct anisotropy,and it achieved the minimum value at β=45°-60°.As the bedding angle increased,the observed brittleness index(BI_(2_β))decreased firstly and increased then,it achieved the lowest value at β=40°-60°,and it is consistent with the uniaxial compression testing results.Compared to the isotropic brittleness index(β=0°),the deviation of the anisotropic brittleness index ranged from 10%to 66.7%,in other words,the anisotropy of brittleness index cannot be ignored for Longmaxi shale.Organic matter content is one of the main intrinsic causes of shale anisotropy,and the anisotropy degree of the brittleness index generally increases with the increase in organic matter content.The present work is valuable for the assessment of anisotropic brittleness for hydraulic fracturing design and wellbore stability analysis. 展开更多
关键词 Shale rock BRITTLENESS Brittleness index ANISOTROPY Transverse isotropy Geophysical logging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部