Admission control is a key mechanism to manage the increasing number of the simultaneous demanding services, requiring a desired Quality of Service(QoS) in a spectrum efficient manner. To address this issue,we investi...Admission control is a key mechanism to manage the increasing number of the simultaneous demanding services, requiring a desired Quality of Service(QoS) in a spectrum efficient manner. To address this issue,we investigate in this work, the use of the superposition coding technique to increase the system capacity through multiuser diversity exploitation. We propose a novel joint admission control and superposition coding formalism based on different utility functions:Opportunistic(OPSC), Great Fairness(GFSC)and Proportional Fairness(PFSC). Simulation results show the superiority of our proposed approaches over other by providing higher mean of served VoIP users and higher throughput while maintaining an average VoIP packet transmission delay lower than 0.6 ms.展开更多
文摘Admission control is a key mechanism to manage the increasing number of the simultaneous demanding services, requiring a desired Quality of Service(QoS) in a spectrum efficient manner. To address this issue,we investigate in this work, the use of the superposition coding technique to increase the system capacity through multiuser diversity exploitation. We propose a novel joint admission control and superposition coding formalism based on different utility functions:Opportunistic(OPSC), Great Fairness(GFSC)and Proportional Fairness(PFSC). Simulation results show the superiority of our proposed approaches over other by providing higher mean of served VoIP users and higher throughput while maintaining an average VoIP packet transmission delay lower than 0.6 ms.