期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Assessment of desertification sensitivity using an improved MEDALUS model in Northern China
1
作者 NingJing Tan CaiXia Zhang +1 位作者 YingYing Wu ZhenTing Wang 《Research in Cold and Arid Regions》 CSCD 2024年第3期141-148,共8页
Assessment of land sensitivity to desertification is an important step to support desertification monitoring and control.Based on the Mediterranean Desertification and Land Use(MEDALUS)model,we defined four quality in... Assessment of land sensitivity to desertification is an important step to support desertification monitoring and control.Based on the Mediterranean Desertification and Land Use(MEDALUS)model,we defined four quality indicators(soil,climate,vegetation and management)to evaluate the sensitivity of land in northern China to desertification.We improved MEDALUS via excluding cities from the areas at risk of desertification by means of defining a threshold value for population density.The framework,validated in northern China,further optimizes the model to link priority areas and land restoration programmed to support desertification control.We found that the four indicators influenced and restricted each other,which jointly affected the distribution of desertification sensitivity in northern China.The spatial distribution of sensitivity in northern China showed large regional differences,with clear boundaries and concentrated distributions of regions with high and low sensitivity;the overall sensitivity decreased,with some areas rated as having moderate,severe,and extremely severe sensitivity changing to slight sensitivity;and the influence weight was much higher for the management quality index than for the climate,vegetation,and soil indexes.This suggests that management was the main factor that affected desertification sensitivity in northern China,and that climate factors exacerbated sensitivity,but the factors that are driving the spatial heterogeneity of the influencing factors need further study。 展开更多
关键词 DESERTIFICATION Sensitivity MEDALUS Factor analysis Northern China
下载PDF
Progress on research and mitigation of wind-blown sand risk in Dunhuang Singing Sand Mountain and Crescent Spring Scenic area,China 被引量:1
2
作者 BenLi Liu KeCun Zhang +6 位作者 JianJun Qu HaiJiang Li QingHe Niu ZhiShan An YingJun Pang LiHai Tan GenSheng Yang 《Research in Cold and Arid Regions》 CSCD 2023年第3期113-121,共9页
The Singing Sand Mountain and Crescent Spring Scenic Spot in Dunhuang,Northwest China is a world-renowned desert attraction that is also an integral component of the Dunhuang UNESCO Global Geopark.This scenic area und... The Singing Sand Mountain and Crescent Spring Scenic Spot in Dunhuang,Northwest China is a world-renowned desert attraction that is also an integral component of the Dunhuang UNESCO Global Geopark.This scenic area underwent a 30-year transformation,i.e.,from a severe sand risk with spring water threatened by sand burial due to dune deformation,to restoration of the original sand flow field and mitigation of the sand burial problem.The current paper summarizes the research on the intensive monitoring of the dynamic change of star dunes near the spring,observation of wind and sand flow movement,and then restoring the harmonic vibration of the sand particles(singing sand)that were previously silenced.The existing and prospective impacts of anthropogenic and natural forces on the deformation of the sand dunes are investigated by integrated methods,guiding the implementation of mitigating measures with significant ameliorative effects.Contrast to common sand control practices that aim to reduce wind speed and stop blown sands,our research highlights the importance of maintaining the natural wind flow field in stabilizing surrounding dunes.These mitigation measures consist of removing excessive vegetation and newly constructed buildings to recover the original wind flow field and sand transport activity.Such research and mitigation efforts ensure the scientific protection and restoration of the special desert landform,and contribute to the mutual enhancement of the conservation and exploitation of this desert scenic spot and similar sites. 展开更多
关键词 Singing Sand Mountain Crescent Spring Wind-blown sand problem Wind flow field Star dune
下载PDF
Biological soil crusts and their potential applications in the sand land over Qinghai-Tibet Plateau
3
作者 Yuan Zhang BenLi Liu 《Research in Cold and Arid Regions》 CSCD 2024年第1期20-29,共10页
The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioratio... The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau. 展开更多
关键词 Biological soil crusts Qinghai-Tibet Plateau Alpine sand areas Inoculated biological soil crusts technology ALGAE CYANOBACTERIA
下载PDF
Sand control effect of HDPE sandbreak nets with different porosity structure 被引量:1
4
作者 QingHe Niu JianJun Qu +1 位作者 AiGuo Zhao LiHai Tan 《Research in Cold and Arid Regions》 CSCD 2022年第6期403-411,共9页
Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the seri... Straw checkerboard sand barriers with a porous structure that consists of a pervious upper portion and a dense lower portion are widely used to achieve great sand control effect.Considering this,and resolving the serious earth surface undercutting problem after HDPE sandbreak net checkboard barriers setting,the authors used HDPE(high-density polyethylene)materials to prepare new sandbreak materials with a similar porous structure.Through wind tunnel simulations and field sand control monitoring,we compared the sand control effect of three HDPE sandbreak nets with different porosity structure.Compared to the sandbreak net with uniform porosity structure,the three types of HDPE sandbreak nets with different porosity structure had poorer effect on reducing sand transport rates,but had longer effective protection distance before sandbreak nets at low wind velocity conditions(<12 m/s),longer effective protection distance at high wind velocity(>14 m/s)and longer effective protection distance between sandbreak nets at all experimental wind velocity conditions.Wind and sand control effect characteristics of HDPE sandbreak nets with different porosity structure provide an ideal material on semiburied checkerboard sand barriers for sand stabilization.By contrast,uniform-type sandbreak nets are used as materials on high upright sand fences for sand blocking.These HDPE sandbreak nets can be used to replace traditional sandbreak materials and have a very high potential for widespread and popular application in aeolian sand disaster control. 展开更多
关键词 HDPE sandbreak nets Different porosity structure Checkerboard sand barriers High upright sand fence Sand control effect
下载PDF
Large scale sand saltation over hard surface:a controlled experiment in still air 被引量:1
5
作者 LIU Benli WANG Zhaoyun +1 位作者 NIU Baicheng QU Jianjun 《Journal of Arid Land》 SCIE CSCD 2021年第6期599-611,共13页
Saltation is the major particle movement type in wind erosion process.Saltating sand grains can rebound up to tens of times larger in length and height over hard surface(such as gravel surface)than over loose sand sur... Saltation is the major particle movement type in wind erosion process.Saltating sand grains can rebound up to tens of times larger in length and height over hard surface(such as gravel surface)than over loose sand surface.Gravels usually have different faces,causing distinct response of the impacting grains,but the effects of the grain and gravel-surface contact angle on grain rebound are not yet well quantified.We performed full-range controlled experiments of grain saltation using different contact angles,grain sizes and impact speeds in still air,to show that contact angle increases the height of representative saltation path but decreases particle travel length.The results were compared with outputs from the COMprehensive numerical model of SALTation(COMSALT).Large saltation height of 4.8 m and length of 9.0 m were recorded.The maximum and representative saltation height over the gravel surface were found to be about 4.9 times and 12.8 times those over the loose sandy surface,respectively.The maximum saltation length may be reduced by 58%and the representative saltation height may be increased by 77%as contact angle increases from 20°to 40°.We further showed that the collision inertia contributes 60%of the saltation length,and wind contributes to the other 40%.These quantitative findings have important implications for modeling saltation trajectory over gravel surface. 展开更多
关键词 sand saltation TRAJECTORY gravel surface contact angle full-scale experiment
下载PDF
Aeolian sediment transport over sandy gobi:Field studies in the Nanhu gobi along the Hami-Lop Nor Railway 被引量:1
6
作者 Tao Wang Jianjun Qu Lihai Tan 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第1期125-134,共10页
Wind-blown sand over sandy gobi with an abundant sediment supply can cause severe sand hazards.However,compared with the study of aeolian transport over gravel gobi with a limited sediment supply,less attention has be... Wind-blown sand over sandy gobi with an abundant sediment supply can cause severe sand hazards.However,compared with the study of aeolian transport over gravel gobi with a limited sediment supply,less attention has been devoted to sandy gobi,and thus,our understanding of wind-blown sand movement on sandy gobi is still poor.Here,we report the results of observations of three transport events on a sandy gobi along the Hami-Lop Nor Railway based on high-frequency saltation particle count and horizontal sediment flux measurements coupled with instantaneous wind velocity measurements.The results reveal that,unlike the notably intermittent aeolian saltation over gravel gobi,continuous transport occurred on the sandy gobi.The mean saltation layer height was 0.23±0.07 m,and it was positively related to both the grain size of surface particles and the wind velocity regardless of the gobi type.The sediment transport rates could be expressed as the power function Q=ap/g[u^(*)(u^(*2)-u^(*)t^(2))]b,and the scaling parameter(b)reached to 2.5,which is much larger than that of other gobi areas(b=1).Our findings suggest that the wind-blown sand over sandy gobi is much more severe than that over gravel gobi,and the Nanhu sandy gobi is the major sand source for sand hazards of the Hami-Lop Nor Railway.Sand-fixation measures such as checkerboard sand barriers with enhanced checkerboard size and barrier height should be the main subject of sand control systems for the Hami-Lop Nor Railway in sandy gobi. 展开更多
关键词 Sandy gobi Saltation threshold salcation layer height Sediment transport rates Wind-blown sand control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部