A Monte Carlo method to study the response of portable detector to terrestrial gamma ray is proposed. This method is based on two-stage Monte Carlo simulation.First, the probability distributions of the phase space co...A Monte Carlo method to study the response of portable detector to terrestrial gamma ray is proposed. This method is based on two-stage Monte Carlo simulation.First, the probability distributions of the phase space coordinates of the events that are most likely to be detected are reconstructed at the phase space shell level. The phase space shell is a closed surface enclosing the detector. The detector response to events originating from the phase space shell is then studied. The full absorption spectra as well as the partial absorption spectra are obtained for natural radionuclides uniformly distributed in the ground. For validation, this method is applied to a Hp Ge portable detector previously studied. The previous study is based on a semiempirical model. Good agreement is achieved when we compare the full-energy peak efficiencies and the total in situ spectra obtained by the two methods. As an application, the effective depth of the activity of the^(137) Cs artificial radionuclide in the soil is determined from the low-energy part of the total in situ spectrum.展开更多
文摘A Monte Carlo method to study the response of portable detector to terrestrial gamma ray is proposed. This method is based on two-stage Monte Carlo simulation.First, the probability distributions of the phase space coordinates of the events that are most likely to be detected are reconstructed at the phase space shell level. The phase space shell is a closed surface enclosing the detector. The detector response to events originating from the phase space shell is then studied. The full absorption spectra as well as the partial absorption spectra are obtained for natural radionuclides uniformly distributed in the ground. For validation, this method is applied to a Hp Ge portable detector previously studied. The previous study is based on a semiempirical model. Good agreement is achieved when we compare the full-energy peak efficiencies and the total in situ spectra obtained by the two methods. As an application, the effective depth of the activity of the^(137) Cs artificial radionuclide in the soil is determined from the low-energy part of the total in situ spectrum.