The Shack-Hartmann wavefront sensor(SHWS)is an essential tool for wavefront sensing in adaptive optical microscopes.However,the distorted spots induced by the complex wavefront challenge its detection performance.Here...The Shack-Hartmann wavefront sensor(SHWS)is an essential tool for wavefront sensing in adaptive optical microscopes.However,the distorted spots induced by the complex wavefront challenge its detection performance.Here,we propose a deep learning based wavefront detection method which combines point spread function image based Zernike coefficient estimation and wavefront stitching.Rather than using the centroid displacements of each micro-lens,this method first estimates the Zernike coefficients of local wavefront distribution over each micro-lens and then stitches the local wavefronts for reconstruction.The proposed method can offer low root mean square wavefront errors and high accuracy for complex wavefront detection,and has potential to be applied in adaptive optical microscopes.展开更多
CaMKII is essential for long-term potentiation(LTP),a process in which synaptic strength is increased following the acquisition of information.Among the four CaMKII isoforms,γCaMKII is the one that mediates the LTP o...CaMKII is essential for long-term potentiation(LTP),a process in which synaptic strength is increased following the acquisition of information.Among the four CaMKII isoforms,γCaMKII is the one that mediates the LTP of excitatory synapses onto inhibitory interneurons(LTPE→I).However,the molecular mechanism underlying howγCaMKII mediates LTPE→I remains unclear.Here,we show thatγCaMKII is highly enriched in cultured hippocampal inhibitory interneurons and opts to be activated by higher stimulating frequencies in the 10–30 Hz range.Following stimulation,γCaMKII is translocated to the synapse and becomes co-localized with the postsynaptic protein PSD-95.Knocking downγCaMKII prevents the chemical LTP-induced phosphorylation and trafficking of AMPA receptors(AMPARs)in putative inhibitory interneurons,which are restored by overexpression ofγCaMKII but not its kinase-dead form.Taken together,these data suggest thatγCaMKII decodes NMDAR-mediated signaling and in turn regulates AMPARs for expressing LTP in inhibitory interneurons.展开更多
Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival.The zona incerta(ZI)has been demonstrated to play important roles in fear learning...Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival.The zona incerta(ZI)has been demonstrated to play important roles in fear learning and fear memory,as well as modulating auditory-induced innate defensive behavior.However,whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown.Here,we found that somatostatin(SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus.Optogenetic inhibition of SST-positive neurons in the rostral ZI resulted in reduced flight responses to an overhead looming stimulus.Optogenetic activation of SST-positive neurons in the rostral ZI induced fear-like defensive behavior including increased immobility and bradycardia.In addition,we demonstrated that manipulation of the GABAergic projections from SST-positive neurons in the rostral ZI to the downstream nucleus reuniens(Re)mediated fear-like defensive behavior.Retrograde trans-synaptic tracing also revealed looming stimulus-activated neurons in the superior colliculus(SC)that projected to the Re-projecting SST-positive neurons in the rostral ZI(SC-ZIrSST-Re pathway).Together,our study elucidates the function of SST-positive neurons in the rostral ZI and the SC-ZIrSST-Re tri-synaptic circuit in mediating the innate fear response.展开更多
Licking behavior is important for water intake.The deep mesencephalic nucleus(DpMe)has been implicated in instinctive behaviors.However,whether the DpMe is involved in licking behavior and the precise neural circuit b...Licking behavior is important for water intake.The deep mesencephalic nucleus(DpMe)has been implicated in instinctive behaviors.However,whether the DpMe is involved in licking behavior and the precise neural circuit behind this behavior remains unknown.Here,we found that the activity of the DpMe decreased during water intake.Inhibition of vesicular glutamate transporter 2-positive(VGLUT2+)neurons in the DpMe resulted in increased water intake.Somatostatin-expressing(SST+),but not protein kinase C-expressing(PKC-8+),GABAergic neurons in the central amygdala(CeA)preferentially innervated DpMe VGLUT2+neurons.The SST+neurons in the CeA projecting to the DpMe were activated at the onset of licking behavior.Activation of these CeA SST+GABAergic neurons,but not PKC-8+GABAergic neurons,projecting to the DpMe was sufficient to induce licking behavior and promote water intake.These findings redefine the roles of the DpMe and reveal a novel CeAssT_DpMevcLUT?cireuit that regulaes icking behavior and promotes water intake.展开更多
The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases,such as depression and anxiety.Meanwhile,the endocannabinoid system plays a crucial role in regul...The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases,such as depression and anxiety.Meanwhile,the endocannabinoid system plays a crucial role in regulating emotions and mainly functions through the cannabinoid type-1 receptor(CB1R),which is strongly expressed in the amygdala of non-human primates(NHPs).However,it remains largely unknown how the CB1Rs in the amygdala of NHPs regulate mental diseases.Here,we investigated the role of CB1R by knocking down the cannabinoid receptor 1(CNR1)gene encoding CB1R in the amygdala of adult marmosets through regional delivery of AAV-SaCas9-gRNA.We found that CB1R knockdown in the amygdala induced anxiety-like behaviors,including disrupted night sleep,agitated psychomotor activity in new environments,and reduced social desire.Moreover,marmosets with CB1R-knockdown had up-regulated plasma cortisol levels.These results indicate that the knockdown of CB1Rs in the amygdala induces anxiety-like behaviors in marmosets,and this may be the mechanism underlying the regulation of anxiety by CB1Rs in the amygdala of NHPs.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61735016,81771877,and 61975178)the Zhejiang Provincial Natural Science Foundation of China(No.LR20F050002)+2 种基金the Key R&D Program of Zhejiang Province,China(No.2021C03001)the CAMS Innovation Fund for Medical Sciences,China(No.2019-I2M-5-057)the Fundamental Research Funds for the Central Universities,China。
文摘The Shack-Hartmann wavefront sensor(SHWS)is an essential tool for wavefront sensing in adaptive optical microscopes.However,the distorted spots induced by the complex wavefront challenge its detection performance.Here,we propose a deep learning based wavefront detection method which combines point spread function image based Zernike coefficient estimation and wavefront stitching.Rather than using the centroid displacements of each micro-lens,this method first estimates the Zernike coefficients of local wavefront distribution over each micro-lens and then stitches the local wavefronts for reconstruction.The proposed method can offer low root mean square wavefront errors and high accuracy for complex wavefront detection,and has potential to be applied in adaptive optical microscopes.
基金This work was supported by Science and Technology Innovation 2030-Major Project(2021ZD0203501)the National Natural Science Foundation of China(81930030,31771109,and 31722023)+5 种基金the National Key R&D Program of China(2019YFA0508603)CAMS Innovation Fund for Medical Sciences(2019-I2M-5-057)Project for Hangzhou Medical Disciplines of ExcellenceKey Project for Hangzhou Medical Disciplinesthe Fundamental Research Funds for the Central Universities of China(2018XZZX002-02,2019XZZX001-01-04,and 2019FZA7009)the National Postdoctoral Program for Innovative Talents(BX2021263).
文摘CaMKII is essential for long-term potentiation(LTP),a process in which synaptic strength is increased following the acquisition of information.Among the four CaMKII isoforms,γCaMKII is the one that mediates the LTP of excitatory synapses onto inhibitory interneurons(LTPE→I).However,the molecular mechanism underlying howγCaMKII mediates LTPE→I remains unclear.Here,we show thatγCaMKII is highly enriched in cultured hippocampal inhibitory interneurons and opts to be activated by higher stimulating frequencies in the 10–30 Hz range.Following stimulation,γCaMKII is translocated to the synapse and becomes co-localized with the postsynaptic protein PSD-95.Knocking downγCaMKII prevents the chemical LTP-induced phosphorylation and trafficking of AMPA receptors(AMPARs)in putative inhibitory interneurons,which are restored by overexpression ofγCaMKII but not its kinase-dead form.Taken together,these data suggest thatγCaMKII decodes NMDAR-mediated signaling and in turn regulates AMPARs for expressing LTP in inhibitory interneurons.
基金supported by the Science and Technology Innovation 2030-Major Project of Brain Science and Brain-like Research(2021ZD0202700,2021ZD0202702)the Key-Area Research and Development Program of Guangdong Province(2019B030335001,2018B030334001)+6 种基金the Major Program of the National Natural Science Foundation of China(82090030,82090031)the CAMS Innovation Fund for Medical Sciences(2019-12M-5-057)the Ministry of Science and Technology(2019YFA0110103)the National Natural Science Foundation of China(81870898)the Fundamental Research Funds for the Central Universities(2021FZZX001-37)the Zhejiang Provincial Natural Science Foundation(LR18H090002)the Young Scientist Program of the National Natural Science Foundation of China(82001135).
文摘Defensive behaviors induced by innate fear or Pavlovian fear conditioning are crucial for animals to avoid threats and ensure survival.The zona incerta(ZI)has been demonstrated to play important roles in fear learning and fear memory,as well as modulating auditory-induced innate defensive behavior.However,whether the neuronal subtypes in the ZI and specific circuits can mediate the innate fear response is largely unknown.Here,we found that somatostatin(SST)-positive neurons in the rostral ZI of mice were activated by a visual innate fear stimulus.Optogenetic inhibition of SST-positive neurons in the rostral ZI resulted in reduced flight responses to an overhead looming stimulus.Optogenetic activation of SST-positive neurons in the rostral ZI induced fear-like defensive behavior including increased immobility and bradycardia.In addition,we demonstrated that manipulation of the GABAergic projections from SST-positive neurons in the rostral ZI to the downstream nucleus reuniens(Re)mediated fear-like defensive behavior.Retrograde trans-synaptic tracing also revealed looming stimulus-activated neurons in the superior colliculus(SC)that projected to the Re-projecting SST-positive neurons in the rostral ZI(SC-ZIrSST-Re pathway).Together,our study elucidates the function of SST-positive neurons in the rostral ZI and the SC-ZIrSST-Re tri-synaptic circuit in mediating the innate fear response.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2019B030335001 and 2018B030334001)the Natural Science Foundation of China(31871070 and 82090031)+2 种基金the Key R&D Program of Zhejiang Province(2020C03009)Funda-mental Research Funds for the Central Universities 2021FZZX001-37,the Non-Profit Central Research Institute Fund of the Chinese Academy of Medical Sciences(2019PT310023)and the CAMS Innovation Fund for Medical Sciences(2019-12M-5-057).
文摘Licking behavior is important for water intake.The deep mesencephalic nucleus(DpMe)has been implicated in instinctive behaviors.However,whether the DpMe is involved in licking behavior and the precise neural circuit behind this behavior remains unknown.Here,we found that the activity of the DpMe decreased during water intake.Inhibition of vesicular glutamate transporter 2-positive(VGLUT2+)neurons in the DpMe resulted in increased water intake.Somatostatin-expressing(SST+),but not protein kinase C-expressing(PKC-8+),GABAergic neurons in the central amygdala(CeA)preferentially innervated DpMe VGLUT2+neurons.The SST+neurons in the CeA projecting to the DpMe were activated at the onset of licking behavior.Activation of these CeA SST+GABAergic neurons,but not PKC-8+GABAergic neurons,projecting to the DpMe was sufficient to induce licking behavior and promote water intake.These findings redefine the roles of the DpMe and reveal a novel CeAssT_DpMevcLUT?cireuit that regulaes icking behavior and promotes water intake.
基金supported by the Zhejiang Province Natural Science Foundation of China(LD22H090003)Key-Area Research and Development Program of Guangdong Province(2019B030335001 and 2018B030334001)+3 种基金the National Natural Science Foundation of China(31871070,82090031,32071097,31871056,and 32170991)the Key R&D Program of Zhejiang Province(2020C03009)Fundamental Research Funds for the Central Universities(2021FZZX001-37)the CAMS Innovation Fund for Medical Sciences(2019-I2M-5-057).
文摘The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases,such as depression and anxiety.Meanwhile,the endocannabinoid system plays a crucial role in regulating emotions and mainly functions through the cannabinoid type-1 receptor(CB1R),which is strongly expressed in the amygdala of non-human primates(NHPs).However,it remains largely unknown how the CB1Rs in the amygdala of NHPs regulate mental diseases.Here,we investigated the role of CB1R by knocking down the cannabinoid receptor 1(CNR1)gene encoding CB1R in the amygdala of adult marmosets through regional delivery of AAV-SaCas9-gRNA.We found that CB1R knockdown in the amygdala induced anxiety-like behaviors,including disrupted night sleep,agitated psychomotor activity in new environments,and reduced social desire.Moreover,marmosets with CB1R-knockdown had up-regulated plasma cortisol levels.These results indicate that the knockdown of CB1Rs in the amygdala induces anxiety-like behaviors in marmosets,and this may be the mechanism underlying the regulation of anxiety by CB1Rs in the amygdala of NHPs.