The Tohoku-Oki earthquake (Mw 9.0) of March 11,2011, was the largest event in the history of Japan. This magnitude 9.0 mega-thrust earthquake initiated approximately 100 km off-shore of Miyagi prefecture and the rup...The Tohoku-Oki earthquake (Mw 9.0) of March 11,2011, was the largest event in the history of Japan. This magnitude 9.0 mega-thrust earthquake initiated approximately 100 km off-shore of Miyagi prefecture and the rupture extended 400-500 km along the Pacific plate. Due to the strong ground motions and tsunami associated by this event, approximately twenty thousand people were killed or missing and more than 220 thousands houses and buildings were totally or partially destroyed. This mega-thrust earthquake was not considered in the national seismic hazard maps for Japan that was published by the HERP (headquarters for earthquake research promotion) of Japan. By comparing the results of the seismic hazard assessment and observed strong ground motions, we understand that the results of assessment were underestimated in Fukushima prefecture and northern part of Ibaraki prefecture. Its cause primarily lies in that it failed to evaluate the Mw 9.0 mega-thrust earthquake in the long-term evaluation for seismic activities. On the other hand, another cause is that we could not make the functional framework which is prepared for treatment of uncertainty for probabilistic seismic hazard assessment work fully. Based on the lessons learned from this earthquake disaster and the experience that we have engaged in the seismic hazard mapping project of Japan, we consider problems and issues to be resolved for probabilistic seismic hazard assessment and make new proposals to improve probabilistic seismic hazard assessment for Japan.展开更多
A precipitation system developed continuously along the western coastline of the Korean Peninsula and created considerable precipitation both along the coast and inland on 26 July 2011. In this study, the causes for t...A precipitation system developed continuously along the western coastline of the Korean Peninsula and created considerable precipitation both along the coast and inland on 26 July 2011. In this study, the causes for this nearshore convective system are investigated from observations and the results of model experiments. Three-dimensional radar fields clearly show that a change of wind at the surface border played an important role in the development of the nearshore convection system. The simulation results, which are very similar to the observations, show that the surface border generated and maintained the convergence zone. The roughness change enhanced the convergence, and the interaction between the deepening cold pool and downward flow maintained the convergence zone. The surface mechanical discontinuity affected by the roughness change between sea and land formed the convergence (gradient of wind stress), which induced momentum transfer to the upper layer. The cold pool created a steep gradient of potential temperature and provided the reason for the propagated convergence zone with the downward flow. The maximum value of the surface change factor, which comprises the influencing factors for the long-lasting convective system, reflects the enhancement of the system at the coast.展开更多
This paper presents results of experimental and numerical investigations of a seesaw energy dissipation system (SEDS) using fluid viscous dampers (FVDs). To confirm the characteristics of the FVDs used in the test...This paper presents results of experimental and numerical investigations of a seesaw energy dissipation system (SEDS) using fluid viscous dampers (FVDs). To confirm the characteristics of the FVDs used in the tests, harmonic dynamic loading tests were conducted in advance of the flee vibration tests and the shaking table tests. Shaking table tests were conducted to demonstrate the damping capacity of the SEDS under random excitations such as seismic waves, and the results showed SEDSs have sufficient damping capacity for reducing the seismic response of flames. Free vibration tests were conducted to confirm the reliability of simplified analysis. Time history response analyses were also conducted and the results are in close agreement with shaking table test results.展开更多
The present study is concerning the systematic descriptions of the Middle Jurassic (Callovian) ammonite fauna from the Damghan Area (eastern Alborz) and contains a rather rich ammonite fauna. The described ammonites c...The present study is concerning the systematic descriptions of the Middle Jurassic (Callovian) ammonite fauna from the Damghan Area (eastern Alborz) and contains a rather rich ammonite fauna. The described ammonites come from the Middle part of the Dalichai Formation, consisting of an alternation of green marl, grey limestone and marly limestone. In this research, the biostratigraphy of these rocks is discussed with special emphasis on the abundant ammonite fauna (Reineckeiidae family). Altogether, 74 specimens of ammonites belonging to 14 species, 3 genera, 3 sub genera from Reineckeiidae family are described. Palaeobiogeographically the ammonite fauna is closely related to that of the sub-Mediterranean Province of the northwestern Tethys. The ammonites represent four zones, i.e. Rehmannia (Loczyceras) cf. segestena (Anceps Zone), Rehmannia (Loczyceras) reissi (Anceps Zone), Rehmannia (Loczyceras) rehmanni (Anceps Zone), Rehmannia (Loczyceras) sequanica densicostata (Coronatum Zone), Reineckeia (Tyrannites) convexa (Gracilis Zone), Reineckeia (Tyrannites) pictava (Gracilis Zone), Reineckeia (Reineckeia) anceps anceps (Anceps Zone), Reineckeia (Reineckeia) anceps elmii (Anceps Zone), Reineckeia (Reineckeia) cf. fehlmani (Anceps Zone), Reineckeia (Reineckeia) nodosa (Athleta Zone), Collotia cf. multicostat (Anceps Zone), Collotia cf. gaillardi (Coronatum Zone), Collotia cf. oxyptychoides (Athleta Zone), Collotia cf. collotiformis (Athleta Zone).展开更多
Species richness of foraminifera assemblages in the Permian succession, contains Dorud, Ruteh and Nessen Formations, in Central Alborz—North of Iran, was estimated and studied based on lithostratigraphy and microbios...Species richness of foraminifera assemblages in the Permian succession, contains Dorud, Ruteh and Nessen Formations, in Central Alborz—North of Iran, was estimated and studied based on lithostratigraphy and microbiostratigraphy of Permian. We used four non-parametric estimators to investigate the species richness: Chao 2, Jackknife 1, Jackknife 2 and bootstrap. These methods estimates the species richness based on the presence/absence data of each taxon identified in the samples. We use the submenu of quadrat richness in “Past” [1] software to estimate richness in regional chronostratigraphic stages.The results show that the estimated diversity of foraminiferal assemblages with the exception of late Yakhtashian, increased constantly from Asselian to Murgabian with the highest diversity of foraminifera seen in the Murgabian. The main decrease in foraminiferal species richness happened during the Midian which corresponds to the kamura cooling event.展开更多
Kanagawa Prefecture, Japan, is just located on the tectonic plate boundary between the Philippines Sea Plate and the North American Plate. This tectonic plate boundary is called Sagami Trough and located in Sagami Bay...Kanagawa Prefecture, Japan, is just located on the tectonic plate boundary between the Philippines Sea Plate and the North American Plate. This tectonic plate boundary is called Sagami Trough and located in Sagami Bay. The 1923 Great Kanto Earthquake (Mj7.9) occurred on this plate boundary sub-ducting from Sagami Trough, the damage due to this earthquake was so huge in Kanaawa Pref., especially, along the big river, called Sagami River, located at the middle part of Kanagawa Pref. which was mostly seriously damaged. It is caused by the soft soil deposit along the Sagami River. So, in this study, we first confirmed the results of single point microtrcemor observation of about 980 points in the target area, and at this time, we tried to investigate the surface soil structure by using the miniature array microtrcemor observation, and aimed to estimate the overall ground structure of Sagami Plain. The ground structure of Sagami plains is complex, but the northern part of the plain is relatively simple and soft soil layer is shallow and stable. But the plains of the southern part, especially the west side of the Sagami River were found to be fairly soft ground. Following above, the surface soil structure in north-south direction is very clearly changed depending on the distance from the sea coast. A changing gap on the basement is very quickly appeared about 10 km far from the coast. And also, we calculated the average Vs of the surface ground and confirmed the consistency with the current ground state while confirming the historical change and the topography situation.展开更多
Damage caused by the 2011 Tohoku Earthquake (Mw 9.0) to transmission and distribution pipelines in Sendai City is summarized. The locations of the pipeline repairs are discussed relative to earthquake intensity, geo...Damage caused by the 2011 Tohoku Earthquake (Mw 9.0) to transmission and distribution pipelines in Sendai City is summarized. The locations of the pipeline repairs are discussed relative to earthquake intensity, geomorphologic conditions and landform change in the developed areas of hilly land. Repair rate (repairs/km) is summarized according to pipe material and presence or absence of artificial landform change. The following findings were obtained: (1) More than 80% of the repairs took place in pipelines installed in higher lands such as hill and terrace areas consisting of hard soils; (2) Nearly all the pipe repairlocations in hill areas are where landform change was made through land development tor residential purposes over me past several decades; (3) The aforementioned repair rate was more than 3.6 times than that of other lowland areas where no landform change occurred. The heaviest concentrations of pipe repairs of vinyl chloride pipes and ductile iron pipes were observed within the boundary area between cutting and filling, having a thickness between -2.5 m and 2.5 m. Approximately 78% of the all pipe repairs occurred outside of areas where severe ground failures took place. A mechanism of pipe damage in the areas free of severe ground failure was discussed.展开更多
Deposits of Lower Carboniferous rocks in Kalmard block are recognized by Gachal informal formation, showing various characteristics in different outcrops. Lower Carboniferous deposits (Gachal formation) are composed c...Deposits of Lower Carboniferous rocks in Kalmard block are recognized by Gachal informal formation, showing various characteristics in different outcrops. Lower Carboniferous deposits (Gachal formation) are composed chiefly of carbonate, evaporite and siliciclastic rocks. This formation is composed of 198 m sandstone, limestone and dolomite as well as a small amount of shale, marl and gypsum in the Madbeiki section. This formation unconformably underlies Precambrian metamorphic deposits (Kalmard formation) while lateritic soils of lower Permian (Chili formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Gachal formation can be divided into 1 siliciclastic petrofacies, 1 evaporite microfacies and 16 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve indicate the high thickness of the microfacies of tidal flat, lagoon and shoal environments and low thickness of the microfacies of open marine environment. The carbonate-evaporite-siliciclastic sequence of Gachal formation is made up of three third-order depositional sequence, separated each other by type 1 sequence boundary (SB1). Siliciclastic and evaporite deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Gachal formation rocks in Madbeiki section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the southern Paleotethys Ocean. The depositional sequence identified in Gachal formation points to the age of Lower Carboniferous, conforming to upper Kaskaskia super sequence. The upper erosional boundary between Gachal and Chili formations conform to the global-scale sea level fall.展开更多
Middle Triassic carbonate sequences of Shotori Formation have a thickness of 70 m and are deposited Robat-e-Kalmard region of Tabas city in Central Iran basin. Gradationally and conformably overlying Sorkh shale Forma...Middle Triassic carbonate sequences of Shotori Formation have a thickness of 70 m and are deposited Robat-e-Kalmard region of Tabas city in Central Iran basin. Gradationally and conformably overlying Sorkh shale Formation, Shotori Formation, mostly composed of medium to thick dolomites (50 m), interbeded with thin lime and sandstones, is disconformable by a laterite horizon at its upper boundary. This Formation mainly consists of fine-to-coarsely crystalline dolomites. According to petrographic (fabric and grain size) and geochemical (elemental analysis of Ca, Mg, Na, Sr, Fe, Mn) evidence, five various types of dolomites were recognized in Shotori Formation. This variety results from early and late diagenetic processes, triggering a change in dolomitizing fluids and thereby forming various dolomites. Geochemical studies have revealed that the dolomites of Shotori Formation have formed under meteoric diagenesis and reducing conditions. Various dolomitization mechanisms are proposed for various types of dolomites;that is to say, Sabkha model is considered for type 1 dolomite, mixing zone model for type 2 and 3 dolomites and burial model for type 4 and 5 dolomites.展开更多
Permian rocks in Kalmard block are recognized with Khan Group, enjoying various characteristics in different outcrops. This group is made up of three informal formations, namely Chili, Sartakht and Hermez. Middle Perm...Permian rocks in Kalmard block are recognized with Khan Group, enjoying various characteristics in different outcrops. This group is made up of three informal formations, namely Chili, Sartakht and Hermez. Middle Permian deposits (Sartakht formation) are composed chiefly of sandstone and carbonate rocks. This formation is composed of 58.6 m sandstone and dolomitic limestone in the Bakhshi section. Lower Permian carbonate deposits (Chili formation) unconformably underlie this formation while lateritic paleosols of upper Permian (Hermez formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Sartakht formation can be divided into 2 siliciclastic petrofacies and 12 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve point to the high thickness of the microfacies of lagoon and shoal environments and low thickness of the microfacies of tidal flat and open marine environments. The carbonate-siliciclastic sequence of Sartakht formation is made up of a third-order depositional sequence, separated from carbonate depositions of lower Permian (Chili formation) and lateritic paleosols of upper Permian by type 1 sequence boundary (SB1). Siliciclastic deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Sartakht formation rocks in Bakhshi section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the south of Paleotethys Ocean. The depositional sequence identified in Sartakht formation points to the age of middle Permian, conforming to middle Absaroka II supersequence. The upper erosional boundary between Sartakht and Hermez formations conforms to the global-scale sea level fall.展开更多
The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute,Kyoto University,Japan,19–21 March,2017....The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute,Kyoto University,Japan,19–21 March,2017.The Global Alliance seeks to contribute to enhancing disaster risk reduction(DRR) and disaster resilience through the collaboration of research organizations around the world.The summit aim was to expand the platform for bridging science and policy making by evaluating the evidence base needed to meet the expected outcomes and actions of the Sendai Framework for Disaster RiskReduction 2015–2030 and its Science and Technology Roadmap.The summit reflected the international nature of collaborative research and action.A pre-conference questionnaire filled out by Global Alliance members identified323 research projects that are indicative of current research.These were categorized to support seven parallel discussion sessions related to the Sendai Framework priorities for action.Four discussion sessions focused on research that aims to deepen the understanding of disaster risks.Three cross-cutting sessions focused on research that is aimed at the priorities for action on governance,resilience,and recovery.Discussion summaries were presentedin plenary sessions in support of outcomes for widely enhancing the science and policy of DRR.展开更多
In recent years, the method of magnetic survey as one of the new techniques in geological and geophysical studies is known. In this study to determine the shape of the stress field of the two methods, Anisotropy of Ma...In recent years, the method of magnetic survey as one of the new techniques in geological and geophysical studies is known. In this study to determine the shape of the stress field of the two methods, Anisotropy of Magnetic Susceptibility (AMS) and paleostress?have been used. Paleomagnetism is the characteristics of magnetic rocks. Some issues in associated with the past places of continental and oceanic plates can be solved. AMS is one of the paleomagnetism methods that pay to measurement of parameters (which are reflector of the magnetic fabrics rocks). It is presenting an ellipsoid with three-axis perpendicular to each other that defines magnetic ellipsoid. In this regard, the number of 12 stations in different rocks (Jurassic to Quaternary) in the southern region of Ardebil sampling was conducted. In this connection, the study of magnetic fabrics has shown an elliptical magnetic susceptibility with the prolate shape. For the separation of paleostress phases in the Khalkhal area using the analysis of the paleostress based on the study of heterogeneous fault-slip data and sliding lineaments. Firstly, data were picked from 10 stations, and after their analysis, the elliptical shape (prolate) has been determinated. The shape of the ellipsoid, based on AMS and paleostress methods and their results show that in both methods the shape of the stress field is prolate.展开更多
The hydrologic changes and the impact of these changes constitute a fundamental global-warmingrelated concern. Faced with threats to human life and natural ecosystems, such as droughts, floods, and soil erosion, water...The hydrologic changes and the impact of these changes constitute a fundamental global-warmingrelated concern. Faced with threats to human life and natural ecosystems, such as droughts, floods, and soil erosion, water resource planners must increasingly make future risk assessments. Though hydrological predictions associated with the global climate change are already being performed, mainly through the use of GCMs, coarse spatial resolutions and uncertain physical processes limit the representation of terrestrial water/energy interactions and the variability in such systems as the Asian monsoon. Despite numerous studies, the regional responses of hydrologic changes resulting from climate change remains inconclusive. In this paper, an attempt at dynamical downsealing of future hydrologic projection under global climate change in Asia is addressed. The authors conducted present and future Asian regional climate simulations which were nested in the results of Atmospheric General Circulation Model (AGCM) experiments. The regional climate model could capture the general simulated features of the AGCM. Also, some regional phenomena such as orographic precipitation, which did not appear in the outcome of the AGCM simulation, were successfully produced. Under global warming, the increase of water vapor associated with the warmed air temperature was projected. It was projected to bring more abundant water vapor to the southern portions of India and the Bay of Bengal, and to enhance precipitation especially over the mountainous regions, the western part of India and the southern edge of the Tibetan Plateau. As a result of the changes in the synoptic flow patterns and precipitation under global warming, the increases of annual mean precipitation and surface runoff were projected in many regions of Asia. However, both the positive and negative changes of seasonal surface runoff were projected in some regions which will increase the flood risk and cause a mismatch between water demand and water availability in the agricultural season.展开更多
Geochemical data and Sr-Nd isotopes of the host rocks and magmatic microgranular enclaves(MMEs)collected from the Oligocene Nodoushan Plutonic Complex(NPC) in the central part of the Urumieh-Dokhtar Magmatic Belt(UDMB...Geochemical data and Sr-Nd isotopes of the host rocks and magmatic microgranular enclaves(MMEs)collected from the Oligocene Nodoushan Plutonic Complex(NPC) in the central part of the Urumieh-Dokhtar Magmatic Belt(UDMB) were studied in order to better understand the magmatic and geodynamic evolution of the UDMB. New U-Pb zircon ages reveal that the NPC was assembled incrementally over ca. 5 m.y., during two main episodes at 30.52 ± 0.11 Ma and 30.06 ± 0.10 Ma in the early Oligocene(middle Rupelian) for dioritic and granite intrusives, and at 24.994 ± 0.037 Ma and 24.13 ± 0.19 Ma in the late Oligocene(latest Chattian) for granodioritic and diorite porphyry units,respectively. The spherical to ellipsoidal enclaves are composed of diorite to monzodiorite and minor gabbroic diorite(SiO_2 = 47.73-57.36 wt.%; Mg# = 42.15-53.04); the host intrusions are mainly granite,granodiorite and diorite porphyry(SiO_2 = 56.51-72.35 wt.%; Mg# = 26.29-50.86). All the samples used in this study have similar geochemical features, including enrichment in large ion lithophile elements(LILEs, e.g. Rb, Ba, Sr) and light rare earth elements(LREEs) relative to high field strength elements(HFSEs) and heavy rare earth elements(HREEs). These features, combined with a relative depletion in Nb,Ta, Ti and P, are characteristic of subduction-related magmas. Isotopic data for the host rocks display ISr = 0.705045-0.707959, εNd(t) =-3.23 to +3.80, and the Nd model ages(TDM) vary from 0.58 Ga to 1.37 Ga. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition,with Isr ranging from 0.705513 to 0.707275 and εNd(t) from -1.46 to 4.62. The MMEs have TDM ranging from 0.49 Ga to 1.39 Ga. Geochemical and isotopic similarities between the MMEs and their host rocks demonstrate that the enclaves have mixed origins and were most probably formed by interactions between the lower crust-and mantle-derived magmas. Geochemical data, in combination with geodynamic evidence, suggest that a basic magma was derived from an enriched subcontinental lithospheric mantle(SCLM), presumably triggered by the influx of the hot asthenosphere. This magma then interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on Sr-Nd isotope data indicate that ~50% to 90% of the lower crust-derived melt and ~10% to 50% of the mantle-derived mafic magma were involved in the genesis of the early Oligocene magmas. In contrast,~45%-65% of the mantle-derived mafic magma were incorporated into the lower crust-derived magma(~35%-55%) that generated the late Oligocene hybrid granitoid rocks. Early Oligocene granitoid rocks contain a higher proportion of crustal material compared to those that formed in the late Oligocene. It is reasonable to assume that lower crust and mantle interaction processes played a significant role in the genesis of these hybridgranitoid bodies, where melts undergoing fractional crystallization along with minor amounts of crustal assimilation could ascend to shallower crustal levels and generate a variety of rock types ranging from diorite to granite.展开更多
The Astara Fault System(AFS) is located in the northwest Alborz, east of Talesh Mountain(TM) and west of the South Caspian Basin(SCB). The AFS is one of the basement rock faults in Iran that is heavily involved ...The Astara Fault System(AFS) is located in the northwest Alborz, east of Talesh Mountain(TM) and west of the South Caspian Basin(SCB). The AFS is one of the basement rock faults in Iran that is heavily involved in seismotectonic activity of the Talesh region, and to which subsidence of the SCB is attributed. There is little information available concerning previous AFS seismic activities and its properties. In order to elucidate the seismic behavior and activities of the AFS, we conducted a research study on paleoseismology of the fault. Based on paleoseismic evidence, two scenarios could be taken into consideration, one of which has three and another has four seismic events with magnitudes Mw in the range of 6.7 to 7.2. Evidence of these seismic events is within sedimentary succession as they have occurred during the past 3 ka(this age is determined based on the deposition rate of the region). Six carbon samples were taken for C^14 age determination tests, the results of which clearly demonstrated that the EvIV(scenario A) and EvⅢ(scenario B) had occurred before 27,444 cal BP, while other events occurred in the time period between 27,444 cal BP and 3 ka ago. If we consider the occurrence of three or four seismic events(based on the two scenarios) to be between 27,444 cal BP and 3 ka ago, the average recurrence interval is 7,119 ± 1,017, but evidence for these events has been removed. If we assume EvI to be the youngest event(in both scenarios), the minimum elapsed time is therefore 3 ka.展开更多
This paper reports stick-slip behaviors of Indian gabbro as studied using a new large-scale biaxial friction apparatus, built in the National Research Institute for Earth Science and Disaster Prevention (NIED), Tsuk...This paper reports stick-slip behaviors of Indian gabbro as studied using a new large-scale biaxial friction apparatus, built in the National Research Institute for Earth Science and Disaster Prevention (NIED), Tsukuba, Japan. The apparatus consists of the existing shaking table as the shear-loading device up to 3,600 kN, the main frame for holding two large rectangular prismatic specimens with a sliding area of 0.75 m^2 and for applying normal stresses an up to 1.33 MPa, and a reaction force unit holding the stationary specimen to the ground. The shaking table can produce loading rates v up to 1.0 m/s, accelerations up to 9.4 m/s^2, and displacements d up to 0.44 m, using four servocontrolled actuators. We report results from eight preliminary experiments conducted with room humidity on the same gabbro specimens at v = 0.1-100 mm/s and an = 0.66-1.33 MPa, and with d of about 0.39 m. The peak and steady-state friction coefficients were about 0.8 and 0.6, respectively, consistent with the Byerlee friction. The axial force drop or shear stress drop during an abrupt slip is linearly proportional to the amount of displacement, and the slope of this rela- tionship determines the stiffness of the apparatus as 1.15 × 10^8 N/m or 153 MPa/m for the specimens we used. This low stiffness makes fault motion very unstable and the overshooting of shear stress to a negative value was recognized in some violent stick-slip events. An abrupt slip occurred in a constant rise time of 16-18 ms despite wide variation of the stress drop, and an average velocity during an abrupt slip is linearly proportional to the stress drop. The use of a large-scale shaking table has a great potential in increasing the slip rate and total displacement in biaxial friction experiments with large specimens.展开更多
The removal of snow from a road or railroad results in an uneven surface and thus the formation of snowdrifts. However, the effect of a surface bump on the scale of a snowdrift is not clear. Snowdrift wind tunnel test...The removal of snow from a road or railroad results in an uneven surface and thus the formation of snowdrifts. However, the effect of a surface bump on the scale of a snowdrift is not clear. Snowdrift wind tunnel tests have long been performed to predict the snow cover distribution due to a snowstorm. However, such tests require a large-scale experimental device, have high installation and maintenance costs, and are not easy to perform. The present study thus used a small water tunnel that is easier to implement. The snowdrift pattern for the real phenomenon of a cube model was reproduced using the small water tunnel and the performance of the tunnel thus verified. The snowdrift water tunnel was then used to predict the snowdrift distribution for uneven surfaces. The tunnel well reproduced the snow cover distribution when the sedimentation velocity ratio and Stokes number in the water tunnel test were the same as those for the real phenomenon, again verifying the performance of the water tunnel test.展开更多
文摘The Tohoku-Oki earthquake (Mw 9.0) of March 11,2011, was the largest event in the history of Japan. This magnitude 9.0 mega-thrust earthquake initiated approximately 100 km off-shore of Miyagi prefecture and the rupture extended 400-500 km along the Pacific plate. Due to the strong ground motions and tsunami associated by this event, approximately twenty thousand people were killed or missing and more than 220 thousands houses and buildings were totally or partially destroyed. This mega-thrust earthquake was not considered in the national seismic hazard maps for Japan that was published by the HERP (headquarters for earthquake research promotion) of Japan. By comparing the results of the seismic hazard assessment and observed strong ground motions, we understand that the results of assessment were underestimated in Fukushima prefecture and northern part of Ibaraki prefecture. Its cause primarily lies in that it failed to evaluate the Mw 9.0 mega-thrust earthquake in the long-term evaluation for seismic activities. On the other hand, another cause is that we could not make the functional framework which is prepared for treatment of uncertainty for probabilistic seismic hazard assessment work fully. Based on the lessons learned from this earthquake disaster and the experience that we have engaged in the seismic hazard mapping project of Japan, we consider problems and issues to be resolved for probabilistic seismic hazard assessment and make new proposals to improve probabilistic seismic hazard assessment for Japan.
基金funded by the Korea Meteorological Institute (Grant No. KMI 2018-05410)
文摘A precipitation system developed continuously along the western coastline of the Korean Peninsula and created considerable precipitation both along the coast and inland on 26 July 2011. In this study, the causes for this nearshore convective system are investigated from observations and the results of model experiments. Three-dimensional radar fields clearly show that a change of wind at the surface border played an important role in the development of the nearshore convection system. The simulation results, which are very similar to the observations, show that the surface border generated and maintained the convergence zone. The roughness change enhanced the convergence, and the interaction between the deepening cold pool and downward flow maintained the convergence zone. The surface mechanical discontinuity affected by the roughness change between sea and land formed the convergence (gradient of wind stress), which induced momentum transfer to the upper layer. The cold pool created a steep gradient of potential temperature and provided the reason for the propagated convergence zone with the downward flow. The maximum value of the surface change factor, which comprises the influencing factors for the long-lasting convective system, reflects the enhancement of the system at the coast.
文摘This paper presents results of experimental and numerical investigations of a seesaw energy dissipation system (SEDS) using fluid viscous dampers (FVDs). To confirm the characteristics of the FVDs used in the tests, harmonic dynamic loading tests were conducted in advance of the flee vibration tests and the shaking table tests. Shaking table tests were conducted to demonstrate the damping capacity of the SEDS under random excitations such as seismic waves, and the results showed SEDSs have sufficient damping capacity for reducing the seismic response of flames. Free vibration tests were conducted to confirm the reliability of simplified analysis. Time history response analyses were also conducted and the results are in close agreement with shaking table test results.
文摘The present study is concerning the systematic descriptions of the Middle Jurassic (Callovian) ammonite fauna from the Damghan Area (eastern Alborz) and contains a rather rich ammonite fauna. The described ammonites come from the Middle part of the Dalichai Formation, consisting of an alternation of green marl, grey limestone and marly limestone. In this research, the biostratigraphy of these rocks is discussed with special emphasis on the abundant ammonite fauna (Reineckeiidae family). Altogether, 74 specimens of ammonites belonging to 14 species, 3 genera, 3 sub genera from Reineckeiidae family are described. Palaeobiogeographically the ammonite fauna is closely related to that of the sub-Mediterranean Province of the northwestern Tethys. The ammonites represent four zones, i.e. Rehmannia (Loczyceras) cf. segestena (Anceps Zone), Rehmannia (Loczyceras) reissi (Anceps Zone), Rehmannia (Loczyceras) rehmanni (Anceps Zone), Rehmannia (Loczyceras) sequanica densicostata (Coronatum Zone), Reineckeia (Tyrannites) convexa (Gracilis Zone), Reineckeia (Tyrannites) pictava (Gracilis Zone), Reineckeia (Reineckeia) anceps anceps (Anceps Zone), Reineckeia (Reineckeia) anceps elmii (Anceps Zone), Reineckeia (Reineckeia) cf. fehlmani (Anceps Zone), Reineckeia (Reineckeia) nodosa (Athleta Zone), Collotia cf. multicostat (Anceps Zone), Collotia cf. gaillardi (Coronatum Zone), Collotia cf. oxyptychoides (Athleta Zone), Collotia cf. collotiformis (Athleta Zone).
文摘Species richness of foraminifera assemblages in the Permian succession, contains Dorud, Ruteh and Nessen Formations, in Central Alborz—North of Iran, was estimated and studied based on lithostratigraphy and microbiostratigraphy of Permian. We used four non-parametric estimators to investigate the species richness: Chao 2, Jackknife 1, Jackknife 2 and bootstrap. These methods estimates the species richness based on the presence/absence data of each taxon identified in the samples. We use the submenu of quadrat richness in “Past” [1] software to estimate richness in regional chronostratigraphic stages.The results show that the estimated diversity of foraminiferal assemblages with the exception of late Yakhtashian, increased constantly from Asselian to Murgabian with the highest diversity of foraminifera seen in the Murgabian. The main decrease in foraminiferal species richness happened during the Midian which corresponds to the kamura cooling event.
文摘Kanagawa Prefecture, Japan, is just located on the tectonic plate boundary between the Philippines Sea Plate and the North American Plate. This tectonic plate boundary is called Sagami Trough and located in Sagami Bay. The 1923 Great Kanto Earthquake (Mj7.9) occurred on this plate boundary sub-ducting from Sagami Trough, the damage due to this earthquake was so huge in Kanaawa Pref., especially, along the big river, called Sagami River, located at the middle part of Kanagawa Pref. which was mostly seriously damaged. It is caused by the soft soil deposit along the Sagami River. So, in this study, we first confirmed the results of single point microtrcemor observation of about 980 points in the target area, and at this time, we tried to investigate the surface soil structure by using the miniature array microtrcemor observation, and aimed to estimate the overall ground structure of Sagami Plain. The ground structure of Sagami plains is complex, but the northern part of the plain is relatively simple and soft soil layer is shallow and stable. But the plains of the southern part, especially the west side of the Sagami River were found to be fairly soft ground. Following above, the surface soil structure in north-south direction is very clearly changed depending on the distance from the sea coast. A changing gap on the basement is very quickly appeared about 10 km far from the coast. And also, we calculated the average Vs of the surface ground and confirmed the consistency with the current ground state while confirming the historical change and the topography situation.
文摘Damage caused by the 2011 Tohoku Earthquake (Mw 9.0) to transmission and distribution pipelines in Sendai City is summarized. The locations of the pipeline repairs are discussed relative to earthquake intensity, geomorphologic conditions and landform change in the developed areas of hilly land. Repair rate (repairs/km) is summarized according to pipe material and presence or absence of artificial landform change. The following findings were obtained: (1) More than 80% of the repairs took place in pipelines installed in higher lands such as hill and terrace areas consisting of hard soils; (2) Nearly all the pipe repairlocations in hill areas are where landform change was made through land development tor residential purposes over me past several decades; (3) The aforementioned repair rate was more than 3.6 times than that of other lowland areas where no landform change occurred. The heaviest concentrations of pipe repairs of vinyl chloride pipes and ductile iron pipes were observed within the boundary area between cutting and filling, having a thickness between -2.5 m and 2.5 m. Approximately 78% of the all pipe repairs occurred outside of areas where severe ground failures took place. A mechanism of pipe damage in the areas free of severe ground failure was discussed.
文摘Deposits of Lower Carboniferous rocks in Kalmard block are recognized by Gachal informal formation, showing various characteristics in different outcrops. Lower Carboniferous deposits (Gachal formation) are composed chiefly of carbonate, evaporite and siliciclastic rocks. This formation is composed of 198 m sandstone, limestone and dolomite as well as a small amount of shale, marl and gypsum in the Madbeiki section. This formation unconformably underlies Precambrian metamorphic deposits (Kalmard formation) while lateritic soils of lower Permian (Chili formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Gachal formation can be divided into 1 siliciclastic petrofacies, 1 evaporite microfacies and 16 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve indicate the high thickness of the microfacies of tidal flat, lagoon and shoal environments and low thickness of the microfacies of open marine environment. The carbonate-evaporite-siliciclastic sequence of Gachal formation is made up of three third-order depositional sequence, separated each other by type 1 sequence boundary (SB1). Siliciclastic and evaporite deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Gachal formation rocks in Madbeiki section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the southern Paleotethys Ocean. The depositional sequence identified in Gachal formation points to the age of Lower Carboniferous, conforming to upper Kaskaskia super sequence. The upper erosional boundary between Gachal and Chili formations conform to the global-scale sea level fall.
文摘Middle Triassic carbonate sequences of Shotori Formation have a thickness of 70 m and are deposited Robat-e-Kalmard region of Tabas city in Central Iran basin. Gradationally and conformably overlying Sorkh shale Formation, Shotori Formation, mostly composed of medium to thick dolomites (50 m), interbeded with thin lime and sandstones, is disconformable by a laterite horizon at its upper boundary. This Formation mainly consists of fine-to-coarsely crystalline dolomites. According to petrographic (fabric and grain size) and geochemical (elemental analysis of Ca, Mg, Na, Sr, Fe, Mn) evidence, five various types of dolomites were recognized in Shotori Formation. This variety results from early and late diagenetic processes, triggering a change in dolomitizing fluids and thereby forming various dolomites. Geochemical studies have revealed that the dolomites of Shotori Formation have formed under meteoric diagenesis and reducing conditions. Various dolomitization mechanisms are proposed for various types of dolomites;that is to say, Sabkha model is considered for type 1 dolomite, mixing zone model for type 2 and 3 dolomites and burial model for type 4 and 5 dolomites.
文摘Permian rocks in Kalmard block are recognized with Khan Group, enjoying various characteristics in different outcrops. This group is made up of three informal formations, namely Chili, Sartakht and Hermez. Middle Permian deposits (Sartakht formation) are composed chiefly of sandstone and carbonate rocks. This formation is composed of 58.6 m sandstone and dolomitic limestone in the Bakhshi section. Lower Permian carbonate deposits (Chili formation) unconformably underlie this formation while lateritic paleosols of upper Permian (Hermez formation) are depicted overlying an erosional unconformity above this formation. According to lithologic and microscopic investigations, the deposits of Sartakht formation can be divided into 2 siliciclastic petrofacies and 12 carbonate microfacies. Field observations, along with microscopic examinations, have resulted in identifying tidal flat, lagoon, shoal and open marine environments in the rocks of the studied formation. Vertical changes of microfacies and depth variation curve point to the high thickness of the microfacies of lagoon and shoal environments and low thickness of the microfacies of tidal flat and open marine environments. The carbonate-siliciclastic sequence of Sartakht formation is made up of a third-order depositional sequence, separated from carbonate depositions of lower Permian (Chili formation) and lateritic paleosols of upper Permian by type 1 sequence boundary (SB1). Siliciclastic deposits include LST system tract, and carbonate microfacies involve TST and HST system tracts, separated from each other by MFS. Sartakht formation rocks in Bakhshi section are deposited in a low-angle homoclinal ramp, mostly in the inner ramp, located in the south of Paleotethys Ocean. The depositional sequence identified in Sartakht formation points to the age of middle Permian, conforming to middle Absaroka II supersequence. The upper erosional boundary between Sartakht and Hermez formations conforms to the global-scale sea level fall.
文摘The Global Alliance of Disaster Research Institutes held its 3rd Global Summit of Research Institutes for Disaster Risk Reduction at the Disaster Prevention Research Institute,Kyoto University,Japan,19–21 March,2017.The Global Alliance seeks to contribute to enhancing disaster risk reduction(DRR) and disaster resilience through the collaboration of research organizations around the world.The summit aim was to expand the platform for bridging science and policy making by evaluating the evidence base needed to meet the expected outcomes and actions of the Sendai Framework for Disaster RiskReduction 2015–2030 and its Science and Technology Roadmap.The summit reflected the international nature of collaborative research and action.A pre-conference questionnaire filled out by Global Alliance members identified323 research projects that are indicative of current research.These were categorized to support seven parallel discussion sessions related to the Sendai Framework priorities for action.Four discussion sessions focused on research that aims to deepen the understanding of disaster risks.Three cross-cutting sessions focused on research that is aimed at the priorities for action on governance,resilience,and recovery.Discussion summaries were presentedin plenary sessions in support of outcomes for widely enhancing the science and policy of DRR.
文摘In recent years, the method of magnetic survey as one of the new techniques in geological and geophysical studies is known. In this study to determine the shape of the stress field of the two methods, Anisotropy of Magnetic Susceptibility (AMS) and paleostress?have been used. Paleomagnetism is the characteristics of magnetic rocks. Some issues in associated with the past places of continental and oceanic plates can be solved. AMS is one of the paleomagnetism methods that pay to measurement of parameters (which are reflector of the magnetic fabrics rocks). It is presenting an ellipsoid with three-axis perpendicular to each other that defines magnetic ellipsoid. In this regard, the number of 12 stations in different rocks (Jurassic to Quaternary) in the southern region of Ardebil sampling was conducted. In this connection, the study of magnetic fabrics has shown an elliptical magnetic susceptibility with the prolate shape. For the separation of paleostress phases in the Khalkhal area using the analysis of the paleostress based on the study of heterogeneous fault-slip data and sliding lineaments. Firstly, data were picked from 10 stations, and after their analysis, the elliptical shape (prolate) has been determinated. The shape of the ellipsoid, based on AMS and paleostress methods and their results show that in both methods the shape of the stress field is prolate.
基金the Global Environment Research Fund of Japan's Ministry of the En- vironment (S-5-3)The data used in this study were acquired as part of the Tropical Rainfall Measuring Mission (TRMM)+1 种基金The algorithms were developed by the TRMM Science TeamThe data were processed by the TRMM Science Data and Information System (TSDIS) and the TRMM Offce.
文摘The hydrologic changes and the impact of these changes constitute a fundamental global-warmingrelated concern. Faced with threats to human life and natural ecosystems, such as droughts, floods, and soil erosion, water resource planners must increasingly make future risk assessments. Though hydrological predictions associated with the global climate change are already being performed, mainly through the use of GCMs, coarse spatial resolutions and uncertain physical processes limit the representation of terrestrial water/energy interactions and the variability in such systems as the Asian monsoon. Despite numerous studies, the regional responses of hydrologic changes resulting from climate change remains inconclusive. In this paper, an attempt at dynamical downsealing of future hydrologic projection under global climate change in Asia is addressed. The authors conducted present and future Asian regional climate simulations which were nested in the results of Atmospheric General Circulation Model (AGCM) experiments. The regional climate model could capture the general simulated features of the AGCM. Also, some regional phenomena such as orographic precipitation, which did not appear in the outcome of the AGCM simulation, were successfully produced. Under global warming, the increase of water vapor associated with the warmed air temperature was projected. It was projected to bring more abundant water vapor to the southern portions of India and the Bay of Bengal, and to enhance precipitation especially over the mountainous regions, the western part of India and the southern edge of the Tibetan Plateau. As a result of the changes in the synoptic flow patterns and precipitation under global warming, the increases of annual mean precipitation and surface runoff were projected in many regions of Asia. However, both the positive and negative changes of seasonal surface runoff were projected in some regions which will increase the flood risk and cause a mismatch between water demand and water availability in the agricultural season.
文摘Geochemical data and Sr-Nd isotopes of the host rocks and magmatic microgranular enclaves(MMEs)collected from the Oligocene Nodoushan Plutonic Complex(NPC) in the central part of the Urumieh-Dokhtar Magmatic Belt(UDMB) were studied in order to better understand the magmatic and geodynamic evolution of the UDMB. New U-Pb zircon ages reveal that the NPC was assembled incrementally over ca. 5 m.y., during two main episodes at 30.52 ± 0.11 Ma and 30.06 ± 0.10 Ma in the early Oligocene(middle Rupelian) for dioritic and granite intrusives, and at 24.994 ± 0.037 Ma and 24.13 ± 0.19 Ma in the late Oligocene(latest Chattian) for granodioritic and diorite porphyry units,respectively. The spherical to ellipsoidal enclaves are composed of diorite to monzodiorite and minor gabbroic diorite(SiO_2 = 47.73-57.36 wt.%; Mg# = 42.15-53.04); the host intrusions are mainly granite,granodiorite and diorite porphyry(SiO_2 = 56.51-72.35 wt.%; Mg# = 26.29-50.86). All the samples used in this study have similar geochemical features, including enrichment in large ion lithophile elements(LILEs, e.g. Rb, Ba, Sr) and light rare earth elements(LREEs) relative to high field strength elements(HFSEs) and heavy rare earth elements(HREEs). These features, combined with a relative depletion in Nb,Ta, Ti and P, are characteristic of subduction-related magmas. Isotopic data for the host rocks display ISr = 0.705045-0.707959, εNd(t) =-3.23 to +3.80, and the Nd model ages(TDM) vary from 0.58 Ga to 1.37 Ga. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition,with Isr ranging from 0.705513 to 0.707275 and εNd(t) from -1.46 to 4.62. The MMEs have TDM ranging from 0.49 Ga to 1.39 Ga. Geochemical and isotopic similarities between the MMEs and their host rocks demonstrate that the enclaves have mixed origins and were most probably formed by interactions between the lower crust-and mantle-derived magmas. Geochemical data, in combination with geodynamic evidence, suggest that a basic magma was derived from an enriched subcontinental lithospheric mantle(SCLM), presumably triggered by the influx of the hot asthenosphere. This magma then interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on Sr-Nd isotope data indicate that ~50% to 90% of the lower crust-derived melt and ~10% to 50% of the mantle-derived mafic magma were involved in the genesis of the early Oligocene magmas. In contrast,~45%-65% of the mantle-derived mafic magma were incorporated into the lower crust-derived magma(~35%-55%) that generated the late Oligocene hybrid granitoid rocks. Early Oligocene granitoid rocks contain a higher proportion of crustal material compared to those that formed in the late Oligocene. It is reasonable to assume that lower crust and mantle interaction processes played a significant role in the genesis of these hybridgranitoid bodies, where melts undergoing fractional crystallization along with minor amounts of crustal assimilation could ascend to shallower crustal levels and generate a variety of rock types ranging from diorite to granite.
文摘The Astara Fault System(AFS) is located in the northwest Alborz, east of Talesh Mountain(TM) and west of the South Caspian Basin(SCB). The AFS is one of the basement rock faults in Iran that is heavily involved in seismotectonic activity of the Talesh region, and to which subsidence of the SCB is attributed. There is little information available concerning previous AFS seismic activities and its properties. In order to elucidate the seismic behavior and activities of the AFS, we conducted a research study on paleoseismology of the fault. Based on paleoseismic evidence, two scenarios could be taken into consideration, one of which has three and another has four seismic events with magnitudes Mw in the range of 6.7 to 7.2. Evidence of these seismic events is within sedimentary succession as they have occurred during the past 3 ka(this age is determined based on the deposition rate of the region). Six carbon samples were taken for C^14 age determination tests, the results of which clearly demonstrated that the EvIV(scenario A) and EvⅢ(scenario B) had occurred before 27,444 cal BP, while other events occurred in the time period between 27,444 cal BP and 3 ka ago. If we consider the occurrence of three or four seismic events(based on the two scenarios) to be between 27,444 cal BP and 3 ka ago, the average recurrence interval is 7,119 ± 1,017, but evidence for these events has been removed. If we assume EvI to be the youngest event(in both scenarios), the minimum elapsed time is therefore 3 ka.
基金supported by the NIED research project titled‘‘Development of the Earthquake Activity Monitoring and Forecasting,’’the JSPS KAKENHI Grant No.23340131the State Key Laboratory of Earthquake Dynamics,Institute of Geology,CEA(LED2014A06)
文摘This paper reports stick-slip behaviors of Indian gabbro as studied using a new large-scale biaxial friction apparatus, built in the National Research Institute for Earth Science and Disaster Prevention (NIED), Tsukuba, Japan. The apparatus consists of the existing shaking table as the shear-loading device up to 3,600 kN, the main frame for holding two large rectangular prismatic specimens with a sliding area of 0.75 m^2 and for applying normal stresses an up to 1.33 MPa, and a reaction force unit holding the stationary specimen to the ground. The shaking table can produce loading rates v up to 1.0 m/s, accelerations up to 9.4 m/s^2, and displacements d up to 0.44 m, using four servocontrolled actuators. We report results from eight preliminary experiments conducted with room humidity on the same gabbro specimens at v = 0.1-100 mm/s and an = 0.66-1.33 MPa, and with d of about 0.39 m. The peak and steady-state friction coefficients were about 0.8 and 0.6, respectively, consistent with the Byerlee friction. The axial force drop or shear stress drop during an abrupt slip is linearly proportional to the amount of displacement, and the slope of this rela- tionship determines the stiffness of the apparatus as 1.15 × 10^8 N/m or 153 MPa/m for the specimens we used. This low stiffness makes fault motion very unstable and the overshooting of shear stress to a negative value was recognized in some violent stick-slip events. An abrupt slip occurred in a constant rise time of 16-18 ms despite wide variation of the stress drop, and an average velocity during an abrupt slip is linearly proportional to the stress drop. The use of a large-scale shaking table has a great potential in increasing the slip rate and total displacement in biaxial friction experiments with large specimens.
文摘The removal of snow from a road or railroad results in an uneven surface and thus the formation of snowdrifts. However, the effect of a surface bump on the scale of a snowdrift is not clear. Snowdrift wind tunnel tests have long been performed to predict the snow cover distribution due to a snowstorm. However, such tests require a large-scale experimental device, have high installation and maintenance costs, and are not easy to perform. The present study thus used a small water tunnel that is easier to implement. The snowdrift pattern for the real phenomenon of a cube model was reproduced using the small water tunnel and the performance of the tunnel thus verified. The snowdrift water tunnel was then used to predict the snowdrift distribution for uneven surfaces. The tunnel well reproduced the snow cover distribution when the sedimentation velocity ratio and Stokes number in the water tunnel test were the same as those for the real phenomenon, again verifying the performance of the water tunnel test.