A hybrid inversion scheme of geoacoustic parameters, which combines dispersion characteristics of normal modes with transmission loss, has been proposed based on the facts that different parameters have different effe...A hybrid inversion scheme of geoacoustic parameters, which combines dispersion characteristics of normal modes with transmission loss, has been proposed based on the facts that different parameters have different effects on sound field. First, considering the dispersion characteristics of normal modes were sensitive to the density and the sound speed of seabottom, and not sensitive to the seabottom attenuation coefficient, the group time delays of different modes and different frequencies were acquired through adaptive optimal kernel time-frequency representation, then the group time delays were taken as the cost function, and using a global optimal algorithm, the seabottom density and the profile of seabottom sound speed were deduced. Successively, the validity of inversion results was evaluated by the a posteriori probability. Last, the attenuation coefficient of sediment is inverted using the transmission loss data recorded from the ship radiation noise. The validity of the total inversion results has been evaluated by making use of the matched field processing source localization.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX1-YW-12-2)the National Natural Science Foundation of China(10974218 and 10734100)
文摘A hybrid inversion scheme of geoacoustic parameters, which combines dispersion characteristics of normal modes with transmission loss, has been proposed based on the facts that different parameters have different effects on sound field. First, considering the dispersion characteristics of normal modes were sensitive to the density and the sound speed of seabottom, and not sensitive to the seabottom attenuation coefficient, the group time delays of different modes and different frequencies were acquired through adaptive optimal kernel time-frequency representation, then the group time delays were taken as the cost function, and using a global optimal algorithm, the seabottom density and the profile of seabottom sound speed were deduced. Successively, the validity of inversion results was evaluated by the a posteriori probability. Last, the attenuation coefficient of sediment is inverted using the transmission loss data recorded from the ship radiation noise. The validity of the total inversion results has been evaluated by making use of the matched field processing source localization.