期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of Sodium Lactate on the Survival of <i>Listeria Monocytogenes</i>, <i>Escherichia coli</i>O157:H7, and <i>Salmonella</i>spp. in Cooked Ham at Refrigerated and Abuse Temperatures 被引量:1
1
作者 Cheng-An Hwang Shiowshuh Sheen Vijay Juneja 《Food and Nutrition Sciences》 2011年第5期464-470,共7页
The objective of this study was to determine the effect of sodium lactate on the survival of Listeria monocytogenes, Escherichia coli O157: H7, and Salmonella spp. in cooked ham during storage at refrigerated and abus... The objective of this study was to determine the effect of sodium lactate on the survival of Listeria monocytogenes, Escherichia coli O157: H7, and Salmonella spp. in cooked ham during storage at refrigerated and abuse temperatures. Cooked ham was added with 0% - 3% lactate, inoculated with a multiple-strain mixture of L. monocytogenes, E. coli O157: H7, or Salmonella spp. and stored at 4oC - 15oC for up to 35 day. The growth of the three pathogens was inhibited in ham containing 3% lactate, and no growth of E. coli O157: H7 and Salmonella spp. occurred at the lowest storage tem- peratures of 6 and 8oC, respectively. In ham containing no lactate, the average growth rates were 0.256 - 0.380 log CFU/day for L. monocytogenes at 4oC - 8oC, 0.242 - 0.315 log CFU/day for E. coli O157: H7 at 8oC - 15oC, and 0.249 - 0.328 log CFU/day for Salmonella spp. at 10oC - 15oC. The addition of 1% or 2% lactate significantly (P < 0.05) reduced the growth rates of the three pathogens, and the effect was more profound at lower temperatures. Salmonella spp. were more sensitive to the effect of lactate than L. monocytogenes and E. coli O157: H7. Polynomial models were developed to describe the growth rates of the three pathogens as affected by the lactate concentration and storage tem- perature. Results from this study demonstrate the effect of lactate on the growth of L. monocytogenes, E. coli O157: H7, and Salmonella spp. in cooked ham and indicate the effective lactate concentrations and storage temperatures that can be used to enhance the microbiological safety of ready-to-eat ham products. 展开更多
关键词 Ham Lactate LISTERIA MONOCYTOGENES Escherichia Coli O157: H7 SALMONELLA spp.
下载PDF
Impact of Chlorine, Temperature and Freezing Shock on the Survival Behavior of <i>Escherichia coli</i>O157:H7 on Ready-to-Eat Meats
2
作者 Shiowshuh Sheen Cheng-An Hwang Vijay K. Juneja 《Food and Nutrition Sciences》 2012年第4期530-538,共9页
Foodborne pathogens continue to pose a potential food safety hazard in ready-to-eat (RTE) meat. Chlorine is commonly used to sanitize processing equipment where Escherichia coli O157:H7 (Ec) may survive and contaminat... Foodborne pathogens continue to pose a potential food safety hazard in ready-to-eat (RTE) meat. Chlorine is commonly used to sanitize processing equipment where Escherichia coli O157:H7 (Ec) may survive and contaminate food products. The objective of this study was to characterize the survival behavior of Ec with different stresses on RTE meats. A multi-strain cocktail of Ec was pre-treated with freezing shock for 15 - 20 h and/or chlorine (0, 25, and 50 ppm) for one hour, and then inoculated onto RTE meat surfaces to obtain about 3.0 log CFU/g. Samples were stored at three abuse temperatures (12℃, 18℃, and 24℃) and Ec was enumerated during the storage. The freezing shock impact was studied using the Ec cocktail stored in a freezer overnight followed by chlorine exposure for one hour. The lag phase and growth rate of Ec were estimated using DMFit (Combase, Baranyi’s model). Results indicated that Ec growth was suppressed by chlorine treatment. Freezing shock was found to have little impact in terms of lag time and growth rate. The lag phase of Ec after exposure to 0 ppm of chlorine (50.3 h) was shorter than that of Ec treated with 25 ppm (54.6 h) and 50 ppm (164.1 h) at 12℃. However, the lag phase decreased with an increase in temperature, e.g. at 25 ppm, lag times were 54.6, 51.1 and 48.9 h for 12℃, 18℃ and 24℃, respectively. Lag times increased with an increase in chlorine concentration. At 24℃, lag times were 15.8, 48.9, and 52.4 h for 0, 25, and 50 ppm, respectively. The growth rate increased with an increase in temperature for 0 and 25 ppm chlorine levels, but decreased at 50 ppm level. Growth rate and lag phase as a function of temperature and chlorine concentration can be described by polynomial models and modified Ratkowsky-type and Zwietering-type models. Results of this study will contribute to risk assessment of RTE meats. 展开更多
关键词 CHLORINE Lag Time Growth Rate E. coli O157:H7 Modeling
下载PDF
Effect of environmental stresses on the survival and cytotoxicity of Shiga toxin-producing Escherichia coli 被引量:1
3
作者 Brian Byongkwon Yoo Yanhong Liu +2 位作者 Vijay Juneja Lihan Huang Cheng-An Hwang 《Food Quality and Safety》 SCIE 2017年第2期139-146,共8页
The objective of this study was to determine the effect of environmental stresses on the cytotoxicity of Shiga toxin-producing Escherichia coli (STEC). STEC O157:H7 and six non-O157 STEC strains (O26:H11, O103:H1, O10... The objective of this study was to determine the effect of environmental stresses on the cytotoxicity of Shiga toxin-producing Escherichia coli (STEC). STEC O157:H7 and six non-O157 STEC strains (O26:H11, O103:H1, O104:H4, O111:NM, O121:NM, and O145:NM) were subjected to osmotic (aw 0.95-0.98), acid (pH 4-7), and chlorine (1-5 ppm) stresses. After stress treatments, bacterial populations, expression of virulence-associated genes, and Vero-cytotoxicity were determined. Among the strains, O145:NM survived at aw 0.97 longer than other serotypes, while O111:NM was significantly more sensitive to osmotic stress. At pH 4, O103:H1 was more resistant to the stress, while O26:H11 and O111:NM had significantly less growth. For 2 ppm chlorine stress, O26:H11, O103:H1, and O145:NM had higher populations (>3 log) than other strains. Stressed strains showed a significant increase in relative gene expression levels of stx1, stx2, and eae in O103:H1, O104:H4, and O145:NM than non-stressed control. Additionally, significantly higher Vero-cytotoxicity, as indicated by lactate dehydrogenase assay, of stressed O26:H11, O103:H1, O104:H4, and O145:NM was observed. The results suggest that the growth and cytotoxicity of selected pathogenic E. coli may be enhanced after being exposed to environmental stresses. 展开更多
关键词 Pathogenic Escherichia coli STRESS GROWTH virulence genes Vero-cytotoxicity.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部