Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
The developmental status and situation of Yunnan Bazi agriculture are introduced. The prominent problems of Yunnan Bazi agriculture are put forward from the restriction of natural environment and the limitation of soc...The developmental status and situation of Yunnan Bazi agriculture are introduced. The prominent problems of Yunnan Bazi agriculture are put forward from the restriction of natural environment and the limitation of social economic conditions. The factors that affect the development of Bazi agriculture in Yunnan Province are analyzed. The factors include the burdens born by Bazi agriculture, the natural endowment of Bazi culture, policy preference of Yunnan Province, the potential and direction of the development of Bazi agriculture. Countermeasures on developing Bazi agriculture in Yunnan Province are put forward: the first one is to improve the level of agricultural science and technoogy; the second one is to intensify the balanced development between mountainous areas and mountainous areas, industry and agriculture, urban and rural areas; the third one is to pay attention to the development and adjustment of ecological agriculture; the fourth one is to keep rational development.展开更多
Type 2 diabetes mellitus(T2DM)is a metabolic disease caused by a glycolipid metabolism disorder and isletβ-cell dysfunction.SCP-80-I is a biologically active water-soluble polysaccharide isolated from sweet corncob,a...Type 2 diabetes mellitus(T2DM)is a metabolic disease caused by a glycolipid metabolism disorder and isletβ-cell dysfunction.SCP-80-I is a biologically active water-soluble polysaccharide isolated from sweet corncob,an agricultural byproduct.The hypoglycemic effects of SCP-80-I on T2DM mice and its mechanisms were investigated in this study.SCP-80-I was found to significantly reduce blood glucose and lipid deposition levels in T2DM mice,as well as decrease serum leptin and increase adiponectin secretion.Interestingly,real time-polymerase chain reaction(RT-PCR)and Western blotting results revealed that SCP-80-I could regulate the expression of several glycolipid metabolisms and insulin secretion genes and proteins,including 5'-AMP-activated protein kinase(AMPK),carnitine palmitoyltransferase I(CPTI),and acetyl coenzyme A carboxylase(ACC)in the liver and AMPK,sirtuin1(Sirtl),peroxisome proliferator-activated receptorycoactivator-1(PGC-1α),and uncoupling protein 2(UCP2)in the pancreas.To have a hypoglycemic effect,SCP-80-1 regulated glycolipid metabolism and islet cell function in the liver by regulating the AMPK/AC C/CPT1 signaling pathway and the AMPK/Sirt1/PGC-1αand AMPK/Sirtl/UCP2 signaling pathways.These findings improve our understanding of polysaccharides derived from sweet corncob and the use of SCP-80-I in the production of hypoglycemic foods.展开更多
Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potentia...Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies.展开更多
Pre-harvest sprouting(PHS)poses a significant global challenge to cereal production,impacting both yield and quality.In this study,we employed genome-wide association studies(GWAS)on diverse rice accessions to identif...Pre-harvest sprouting(PHS)poses a significant global challenge to cereal production,impacting both yield and quality.In this study,we employed genome-wide association studies(GWAS)on diverse rice accessions to identify novel PHS-associated haplotypes.An assessment of 127 cultivated accessions for panicle germination(PHS)and detached grain germination(germination rate of detached grains at the 14th day(D14))revealed considerable phenotypic variation among rice ecotypes.GWAS analysis identified 91 significant signals at–log10(P-value)>5,including 15SNPs for PHS and 76 SNPs for D14.A subsequent linkage disequilibrium(LD)block-based GWAS analysis detected 227 significant SNPs for both traits,consisting of 18 nonsynonymous substitutions located on the coding regions of nine genes.Further haplotype analysis identified 32 haplotypes,with 10 specific to cultivated accessions,19 specific to the wild type,and three shared between them.A phenotypic assessment of major haplotypes revealed significant differences between resistant(Hap1 and Hap2)and susceptible haplotypes(Hap5,Hap27,and Hap28),distinguished by a G/A SNP within a novel gene,Os04g0545200.The identified haplotypes offer promising prospects for haplotypebased breeding aimed at enhancing PHS resistance in rice.展开更多
The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH g...The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH groups in PAA leads to the formation of intramolecular and intermolecular hydrogen bonds,greatly weakening the bonding force of the binder to SiO surface.However,strengthening the binder-material interaction from the perspective of binder molecular regulation poses a significant challenge.Herein,a modified PAA-Li_(x)(0.25≤x≤1)binder with prominent mechanical properties and adhesion strength is specifically synthesized for SiO anodes by quantitatively substituting the carboxylic hydrogen with lithium.The appropriate lithium substitution(x=0.25)not only effectively increases the number of hydrogen bonds between the PAA binder and SiO surface owing to charge repulsion effect between ions,but also guarantees moderate entanglement between PAA-Li_x molecular chains through the ion-dipole interaction.As such,the PAA-Li_(0.25)/SiO electrode exhibits exceptional mechanical properties and the lowest volume change,as well as the optimum cycling(1237.3 mA h g^(-1)after 100cycles at 0.1 C)and rate performance(1000.6 mA h g^(-1)at 1 C),significantly outperforming the electrode using pristine PAA binder.This work paves the way for quantitative regulation of binders at the molecular level.展开更多
The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing ...The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.展开更多
As oil is now an important resource for the survival and development of mankind,the consumption of oil continues to increase each year,and there have been a number of major oil spills in history,such as the oil spill ...As oil is now an important resource for the survival and development of mankind,the consumption of oil continues to increase each year,and there have been a number of major oil spills in history,such as the oil spill from the Deepwater Horizon drilling rig.Therefore,oil spills during storage and transportation have become an issue of serious concern.Current methods such as incineration and chemical methods cause secondary environmental pollution and fail to enable resource recovery.The adsorption method by porous materials has attracted worldwide attention due to its simplicity,portability,and efficiency.It has become an important factor to explore how porous adsorption materials can adsorb efficiently and reduce environmental pollution.Biomass resources are abundant,cost-effective,biodegradable,and sustainable,which have been extensively explored for the production of porous materials.Herein,recent advances in cellulose-based,chitosan-based,wood-based and other biomassbased oil-absorbing porous materials are summarized,and cellulose-based porous materials,such as nanocellulose,bacterial cellulose,and regenerated cellulose and their related derivatives,are further expanded.In addition,typical environmentally friendly manufacturing methods and the oil adsorption capacities of various oil-absorbing porous materials are also discussed.Compared with the traditional petrochemical adsorption materials,the development advantages of biomass porous oil absorption materials are analyzed.The reasons hindering the popularization and use of oil-absorbing biomass materials are summarized and the future application fields are prospected.展开更多
Background The poultry industry needs effective antibiotic alternatives to control outbreaks of necrotic enteritis(NE)caused by Clostridium perfringens.Methods The aim of this study was to investigate the effects of d...Background The poultry industry needs effective antibiotic alternatives to control outbreaks of necrotic enteritis(NE)caused by Clostridium perfringens.Methods The aim of this study was to investigate the effects of dietary supplementation with Macleaya cordata extract(MCE)on the immune function and gut microbiota of broilers with NE.A total of 2881-day-old broiler chicks were randomly assigned to a 2×2 factorial arrangement with two concentrations of dietary MCE supplementation(0 or 350 mg/kg of diet)and two disease challenge statuses(control or NE).Results The results revealed that NE significantly increased the feed conversion rate(FCR),mortality,intestinal lesion score,the levels of IL-1β,IL-17 and IFN-γ/IL-4 in serum and IL-17/IL-10 in the jejunal mucosa,m RNA levels of TLR2,IFN-γand p Ig R in the jejunum,and Clostridium perfringens concentrations in the cecum.NE significantly decreased the body weight(BW),body weight gain(BWG),jejunal villus height,V/C,m RNA level of AMPK-α1 in jejunum,IL-4 level in the jejunal mucosa and lactic acid bacteria abundance in the cecum.MCE significantly increased BW,BWG,jejunal villus height,V/C,m RNA levels of occludin,ZO-1 and AMPK-α1 in the jejunum,the levels of Ig A and Ig G in serum and IL-10 in the jejunal mucosa and m RNA levels of NF-κB,IL-10 and MHC-II in the jejunum.Additionally,MCE significantly decreased the FCR,mortality,intestinal lesion score,jejunal crypt depth,the levels of IFN-γand IL-17 in serum and IL-17/IL-10 in the jejunal mucosa,Clostridium perfringens concentrations in the cecum,and m RNA levels of IL-17/IL-10 in the jejunum.Moreover,NE significantly increased the abundance of bacteria that are associated with inflammation,obesity and depression(Alistipes,Barnesiella,Intestinimonas,RF39 and UCG-005)and significantly decreased the abundance of short-chain fatty acid(SCFA)-producing bacteria(Anaerotruncus,Butyricicoccus and Bacteroides)in the cecum.MCE significantly increased the abundance of SCFA-producing bacteria(Streptococcus,Ruminococcus_torques_group and Lachnospiraceae_NK4A136_group)and significantly reduced the abundance of bacteria that are associated with inflammation and obesity(Alistipes,Barnesiella and UCG-010)in the cecum.In the cecum of broilers with NE,the relative abundance of Barnesiella and Alistipes was higher and that of Lachnoclostridium and Shuttleworthia was lower.Interestingly,these trends were reversed by the addition of MCE to the diet.Spearman correlation analysis showed that Barnesiella and Alistipes were associated with enhanced intestinal inflammation and inhibited growth performance,whereas Lachnoclostridium and Shuttleworthia were associated with anti-inflammatory effects.Conclusions MCE ameliorated the loss of growth performance in broiler chickens with NE,probably by regulating the intestinal barrier,immune function,and gut microbiota.展开更多
Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In thi...Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.展开更多
The application of microorganisms as probiotics is limited due to lack of safety evaluation.Here,a novel multi-stress-tolerant yeast Meyerozyma guilliermondii GXDK6 with aroma-producing properties was identified from ...The application of microorganisms as probiotics is limited due to lack of safety evaluation.Here,a novel multi-stress-tolerant yeast Meyerozyma guilliermondii GXDK6 with aroma-producing properties was identified from marine mangrove microorganisms.Its safety and probiotic properties were assessed in accordance with phenotype and whole-genome sequencing analysis.Results showed that the genes and phenotypic expression of related virulence,antibiotic resistance and retroelement were rarely found.Hyphal morphogenesis genes(SIT4,HOG1,SPA2,ERK1,ICL1,CST20,HSP104,TPS1,and RHO1)and phospholipase secretion gene(VPS4)were annotated.True hyphae and phospholipase were absent.Only one retroelement(Tad1-65_BG)was found.Major biogenic amines(BAs)encoding genes were absent,except for spermidine synthase(JA9_002594),spermine synthase(JA9_004690),and tyrosine decarboxylase(inx).The production of single BAs and total BAs was far below the food-defined thresholds.GXDK6 had no resistance to common antifungal drugs.Virulence enzymes,such as gelatinase,DNase,hemolytic,lecithinase,and thrombin were absent.Acute toxicity test with mice demonstrated that GXDK6 is safe.GXDK6 has a good reproduction ability in the simulation gastrointestinal tract.GXDK6 also has a strong antioxidant ability,β-glucosidase,and inulinase activity.To sum up,GXDK6 is considered as a safe probiotic for human consumption and food fermentation.展开更多
Tungstated zirconia(WO_(3)/ZrO_(2))solid acid catalysts with different WO_(3) contents were prepared by a hydrothermal method and then used in the catalytic aquathermolysis of heavy oil from Xinjiang.The WO_(3)/ZrO_(2...Tungstated zirconia(WO_(3)/ZrO_(2))solid acid catalysts with different WO_(3) contents were prepared by a hydrothermal method and then used in the catalytic aquathermolysis of heavy oil from Xinjiang.The WO_(3)/ZrO_(2) solid acid catalyst was characterized by a range of characterization methods,including X-ray diffraction,NH3-temperature programmed desorption,and pyridine infrared spectroscopy.The WO_(3) content of the WO_(3)/ZrO_(2) catalysts had an important impact on the structure and property of the catalysts.When the WO_(3) mass fraction was 20%,it facilitated the formation of tetragonal zirconia,thereby enhancing the creation of robust acidic sites.Acidity is considered to have a strong impact on the catalytic performance of the aquathermolysis of heavy oil.When the catalyst containing 20%WO_(3) was used to catalyze the aquathermolysis of heavy oil under conditions of 14.5 MPa,340℃,and 24 h,the viscosity of heavy oil decreased from 47266 to 5398 mPa·s and the viscosity reduction rate reached 88.6%.The physicochemical properties of heavy oil before and after the aquathermolysis were analyzed using a saturates,aromatics,resins,and asphaltenes analysis,gas chromatography,elemental analysis,densimeter etc.After the aquathermolysis,the saturate and aromatic contents significantly increased from 43.3%to 48.35%and 19.47%to 21.88%,respectively,with large reductions in the content of resin and asphaltene from 28.22%to 25.06%and 5.36%to 2.03%,respectively.The sulfur and nitrogen contents,and the density of the oil were significantly decreased.These factors were likely the main reasons for promoting the viscosity reduction of heavy oil during the aquathermolysis over the WO_(3)/ZrO_(2) solid acid catalysts.展开更多
The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical perfo...The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.展开更多
A new species of the genus Brachytarsophrys,named Brachytarsophrys wenshanensis sp.nov.,has been identified in southeastern Yunnan,China.This new species can be readily distinguished from other known congeners by both...A new species of the genus Brachytarsophrys,named Brachytarsophrys wenshanensis sp.nov.,has been identified in southeastern Yunnan,China.This new species can be readily distinguished from other known congeners by both morphological criterion and molecular analysis of three mitochondrial gene segments:16S,COI,and Cytb.This classification is based on the following morphological characters:(1)medium body size(SVL 83.8–85.1 mm in two adult males);(2)enormous head,with head width nearly 1.2 times the length;(3)tongue pyriform,feebly notched;(4)non-meeting heels;(5)male lacking nuptial pad;(6)tibiotarsal articulation reaching angle of mouth when hindlimbs are extended forward alongside the body;(7)absence of outer metatarsal tubercle,inner metatarsal tubercle elliptic and approximately equal to first toe;(8)rudimentary toe webbing,webbing formula:Ⅰ(2–)–(2^(++))Ⅱ(2^(–))–(3^(++))Ⅲ(2^(½))–(4)Ⅳ(4^(+))–(2^(⅔))V;(9)lateral fringes narrow;(10)dermal ridge or glandular fold on dorsum absent;(11)pectoral glands distinct and irregular,femoral gland small.Our work increases the number of species within the genus Brachytarsophrys to 9.展开更多
Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature...Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.展开更多
To unlock the full potential of PSCs,machine learning(ML)was implemented in this research to predict the optimal combination of mesoporous-titanium dioxide(mp-TiO_(2))and weight percentage(wt%)of phenyl-C_(61)-butyric...To unlock the full potential of PSCs,machine learning(ML)was implemented in this research to predict the optimal combination of mesoporous-titanium dioxide(mp-TiO_(2))and weight percentage(wt%)of phenyl-C_(61)-butyric acid methyl ester(PCBM),along with the current density(J_(sc)),open-circuit voltage(V_(oc)),fill factor(ff),and energy conversion efficiency(ECE).Then,the combination that yielded the highest predicted ECE was selected as a reference to fabricate PCBM-PSCs with nanopatterned TiO_(2)layer.Subsequently,the PCBM-PSCs with nanopatterned TiO_(2)layers were fabricated and characterized to further understand the effects of nanopatterning depth and wt%of PCBM on PSCs.Experimentally,the highest ECE of 17.338%is achieved at 127 nm nanopatterning depth and 0.10 wt%of PCBM,where the J_(sc),V_(oc),and ff are 22.877 mA cm^(-2),0.963 V,and 0.787,respectively.The measured J_(sc),V_(oc),ff,and ECE values show consistencies with the ML prediction.Hence,these findings not only revealed the potential of ML to be used as a preliminary investigation to navigate the research of PSCs but also highlighted that nanopatterning depth has a significant impact on J_(sc),and the incorporation of PCBM on perovskite layer influenced the V_(oc)and ff,which further boosted the performance of PSCs.展开更多
Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,h...Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,heterogeneous FeS@NiS is synthesized by cationic Co doping via surface-structure engineering.The density functional theory(DFT)theoretical calculations are firstly performed to predict the advantages of Co dopant by improving the OH^(−)adsorption properties and adjusting electronic structure,benefiting ions/electron transfer.The dynamic surface evolution is further explored which demonstrates that CoFeS@CoNiS could be quickly reconstructed to Ni(Co)Fe_(2)O_(4)during the charging process,while the unstable structure of the amorphous Ni(Co)Fe_(2)O_(4)results in partial conversion to Ni/Co/FeOOH at high potentials,which contributes to the more reactive active site and good structural stability.Thus,the free-standing electrode reveals excellent electrochemical performance with a superior capacity(335.6 mA h g^(−1),2684 F g^(−1))at 3 A g^(−1).Furthermore,the as-fabricated device shows a quality energy density of 78.1 W h kg^(−1)at a power density of 750 W kg^(−1)and excellent cycle life of 92.1%capacitance retention after 5000 cycles.This work offers a facile strategy to construct versatile morphological structures using electrochemical activation and holds promising applications in energy-related fields.展开更多
MXene,a transition metal carbide/nitride,has been prominent as an ideal electrochemical active material for supercapacitors.However,the low MXene load limits its practical applications.As environmental concerns and su...MXene,a transition metal carbide/nitride,has been prominent as an ideal electrochemical active material for supercapacitors.However,the low MXene load limits its practical applications.As environmental concerns and sustainable development become more widely recognized,it is necessary to explore a greener and cleaner technology to recycle textile by-products such as cotton.The present study proposes an effective 3D fabrication method that uses MXene to fabricate waste denim felt into ultralight and flexible supercapacitors through needling and carbonization.The 3D structure provided more sites for loading MXene onto Z-directional fiber bundles,resulting in more efficient ion exchange between the electrolyte and electrodes.Furthermore,the carbonization process removed the specific adverse groups in MXenes,further improving the specific capacitance,energy density,power density and electrical conductivity of supercapacitors.The electrodes achieve a maximum specific capacitance of 1748.5 mF cm-2 and demonstrate remarkable cycling stability maintaining more than 94%after 15,000 galvanostatic charge/discharge cycles.Besides,the obtained supercapacitors present a maximum specific capacitance of 577.5 mF cm^(-2),energy density of 80.2μWh cm^(-2)and power density of 3 mW cm^(-2),respectively.The resulting supercapacitors can be used to develop smart wearable power devices such as smartwatches,laying the foundation for a novel strategy of utilizing waste cotton in a high-quality manner.展开更多
Due to the spectral and spatial properties of pervious and impervious surfaces,image classification and information extraction in detailed,small-scale mapping of urban surface materials is quite difficult and complex....Due to the spectral and spatial properties of pervious and impervious surfaces,image classification and information extraction in detailed,small-scale mapping of urban surface materials is quite difficult and complex.Emerging methods and innovations in image classification have centred on object-based classification techniques and various segmentation techniques,which are fundamental to this approach.Consequently,the purpose of this study is to determine which classification method is most suitable for extracting linear features in terms of techniques and performance by comparing two classification methods,pixel-based approach and object-based approach,using WorldView-2 satellite imagery to specifically highlight linear features such as roads,building edges,and road dividers.Two applied algorithms,including support vector machines(SVM)and ruled-based,were evaluated using two distinct software.A comparison of the results reveals that the object-based classification has a higher overall resolution than the pixel-based classification.The output of rule-based classificationwas satisfactory,with an overall accuracy of 88.6%(ENVI)and 92.2%(e-Cognition).The SVM classification result contained misclassified impervious surfaces and other urban features,as well as mixed objects.This classification achieved an overall accuracy of 75.1%.Nonetheless,this study provides an excellent overview for understanding the differences in their performances on the same data,as well as a comparison of the software employed.展开更多
气候变化背景下进一步开展高污染地区气溶胶直接辐射效应的研究,对于该地区的大气环境监测、气候变化评估以及农业生产布局等具有重要意义。利用全球气溶胶监测网(AERONET)多年观测资料以及MODIS地表反照率数据,借助6S(Second Simulatio...气候变化背景下进一步开展高污染地区气溶胶直接辐射效应的研究,对于该地区的大气环境监测、气候变化评估以及农业生产布局等具有重要意义。利用全球气溶胶监测网(AERONET)多年观测资料以及MODIS地表反照率数据,借助6S(Second Simulation of a Satellite Signal in the Solar Spectrum)辐射传输模式,定量评估2001年1月-2016年12月中国AERONET北京、香河和太湖3个典型高污染站点多年晴空条件下的气溶胶直接辐射效应。结果表明:(1)各个高污染站点气溶胶PM2.5质量浓度季节变化特征差异明显,秋冬污染较为严重,其中高值主要集中在1月、2月、11月和12月;(2)与无气溶胶影响相比,气溶胶致使各站点地表直接辐射年际变化较明显。在气溶胶影响下,北京、香河和太湖3个站点2001-2016年地表日平均直接辐射年际变化较明显,均呈波动增加趋势,且香河站日平均直接辐射增加最大(621.14W·m-2),太湖站次之(743.29W·m-2),北京站最小(488.14W·m-2)。(3)气溶胶影响下各站点地表直接辐射明显降低,且气溶胶对各站点影响差异较大。2001-2016年,北京、太湖和香河站年平均地表直接辐射分别降低32.29%、24.01%和15.07%。其中,气溶胶对北京站的地表直接辐射影响最大,香河站最小。(4)近15a来,北京、香河和太湖3个站点气溶胶地表辐射效应均呈现增加趋势。展开更多
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金Supported by Science and Technology Innovation Program of Bureau of Geology and Mineral Exploration of Yunnan Province (2010jj03)
文摘The developmental status and situation of Yunnan Bazi agriculture are introduced. The prominent problems of Yunnan Bazi agriculture are put forward from the restriction of natural environment and the limitation of social economic conditions. The factors that affect the development of Bazi agriculture in Yunnan Province are analyzed. The factors include the burdens born by Bazi agriculture, the natural endowment of Bazi culture, policy preference of Yunnan Province, the potential and direction of the development of Bazi agriculture. Countermeasures on developing Bazi agriculture in Yunnan Province are put forward: the first one is to improve the level of agricultural science and technoogy; the second one is to intensify the balanced development between mountainous areas and mountainous areas, industry and agriculture, urban and rural areas; the third one is to pay attention to the development and adjustment of ecological agriculture; the fourth one is to keep rational development.
基金financially supported by the Doctoral Scientific Research Start-up Foundation of the Harbin University of Commerce (2019DS098)the Young Innovation Talents Project from the Harbin University of Commerce (2019CX31)the Graduate Innovation Fund from the Harbin University of Commerce (YJSCX2019–615HSD)。
文摘Type 2 diabetes mellitus(T2DM)is a metabolic disease caused by a glycolipid metabolism disorder and isletβ-cell dysfunction.SCP-80-I is a biologically active water-soluble polysaccharide isolated from sweet corncob,an agricultural byproduct.The hypoglycemic effects of SCP-80-I on T2DM mice and its mechanisms were investigated in this study.SCP-80-I was found to significantly reduce blood glucose and lipid deposition levels in T2DM mice,as well as decrease serum leptin and increase adiponectin secretion.Interestingly,real time-polymerase chain reaction(RT-PCR)and Western blotting results revealed that SCP-80-I could regulate the expression of several glycolipid metabolisms and insulin secretion genes and proteins,including 5'-AMP-activated protein kinase(AMPK),carnitine palmitoyltransferase I(CPTI),and acetyl coenzyme A carboxylase(ACC)in the liver and AMPK,sirtuin1(Sirtl),peroxisome proliferator-activated receptorycoactivator-1(PGC-1α),and uncoupling protein 2(UCP2)in the pancreas.To have a hypoglycemic effect,SCP-80-1 regulated glycolipid metabolism and islet cell function in the liver by regulating the AMPK/AC C/CPT1 signaling pathway and the AMPK/Sirt1/PGC-1αand AMPK/Sirtl/UCP2 signaling pathways.These findings improve our understanding of polysaccharides derived from sweet corncob and the use of SCP-80-I in the production of hypoglycemic foods.
基金supported by the National Key Research and Development Program of China(2022YFD2300300)the National Natural Science Foundation of China(41907072)+1 种基金the Scientific Research Foundation of Zhejiang A&F University,China(2022LFR003)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(21)3007).
文摘Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Ministry of Science and Information and Communication Technology(MSIT),Republic of Korea(NRF2022R1A4A1030348 and 2023R1A2C1004432)the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)through the Digital Breeding Transformation Technology Development Program,funded by the Ministry of Agriculture,Food and Rural Affairs(MAFRA),Republic of Korea(322060031HD020)the Cooperative Research Program for Agriculture Science and Technology Development,Rural Development Administration,Republic of Korea(RS-2023-00222739)。
文摘Pre-harvest sprouting(PHS)poses a significant global challenge to cereal production,impacting both yield and quality.In this study,we employed genome-wide association studies(GWAS)on diverse rice accessions to identify novel PHS-associated haplotypes.An assessment of 127 cultivated accessions for panicle germination(PHS)and detached grain germination(germination rate of detached grains at the 14th day(D14))revealed considerable phenotypic variation among rice ecotypes.GWAS analysis identified 91 significant signals at–log10(P-value)>5,including 15SNPs for PHS and 76 SNPs for D14.A subsequent linkage disequilibrium(LD)block-based GWAS analysis detected 227 significant SNPs for both traits,consisting of 18 nonsynonymous substitutions located on the coding regions of nine genes.Further haplotype analysis identified 32 haplotypes,with 10 specific to cultivated accessions,19 specific to the wild type,and three shared between them.A phenotypic assessment of major haplotypes revealed significant differences between resistant(Hap1 and Hap2)and susceptible haplotypes(Hap5,Hap27,and Hap28),distinguished by a G/A SNP within a novel gene,Os04g0545200.The identified haplotypes offer promising prospects for haplotypebased breeding aimed at enhancing PHS resistance in rice.
基金supported by the National Natural Science Foundation of China (Grant Nos.92372101,52162036 and 21875155)the Fundamental Research Funds for the Central Universities (Grant Nos.20720220010)the National Key Research and Development Program of China (Grant Nos.2021YFA1201502)。
文摘The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH groups in PAA leads to the formation of intramolecular and intermolecular hydrogen bonds,greatly weakening the bonding force of the binder to SiO surface.However,strengthening the binder-material interaction from the perspective of binder molecular regulation poses a significant challenge.Herein,a modified PAA-Li_(x)(0.25≤x≤1)binder with prominent mechanical properties and adhesion strength is specifically synthesized for SiO anodes by quantitatively substituting the carboxylic hydrogen with lithium.The appropriate lithium substitution(x=0.25)not only effectively increases the number of hydrogen bonds between the PAA binder and SiO surface owing to charge repulsion effect between ions,but also guarantees moderate entanglement between PAA-Li_x molecular chains through the ion-dipole interaction.As such,the PAA-Li_(0.25)/SiO electrode exhibits exceptional mechanical properties and the lowest volume change,as well as the optimum cycling(1237.3 mA h g^(-1)after 100cycles at 0.1 C)and rate performance(1000.6 mA h g^(-1)at 1 C),significantly outperforming the electrode using pristine PAA binder.This work paves the way for quantitative regulation of binders at the molecular level.
基金supported by the National Natural Science Foundation of China(Grant Nos.42171135 and 12262009)the“CUG Scholar”Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022098).
文摘The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves.
基金supported by Jiangsu Province Biomass Energy and Material Laboratory(JSBEM-S-202201)the National Natural Science Foundation of China(31901257)School-Level Research Projects of the Yancheng Institute of Technology(xjr2019008).
文摘As oil is now an important resource for the survival and development of mankind,the consumption of oil continues to increase each year,and there have been a number of major oil spills in history,such as the oil spill from the Deepwater Horizon drilling rig.Therefore,oil spills during storage and transportation have become an issue of serious concern.Current methods such as incineration and chemical methods cause secondary environmental pollution and fail to enable resource recovery.The adsorption method by porous materials has attracted worldwide attention due to its simplicity,portability,and efficiency.It has become an important factor to explore how porous adsorption materials can adsorb efficiently and reduce environmental pollution.Biomass resources are abundant,cost-effective,biodegradable,and sustainable,which have been extensively explored for the production of porous materials.Herein,recent advances in cellulose-based,chitosan-based,wood-based and other biomassbased oil-absorbing porous materials are summarized,and cellulose-based porous materials,such as nanocellulose,bacterial cellulose,and regenerated cellulose and their related derivatives,are further expanded.In addition,typical environmentally friendly manufacturing methods and the oil adsorption capacities of various oil-absorbing porous materials are also discussed.Compared with the traditional petrochemical adsorption materials,the development advantages of biomass porous oil absorption materials are analyzed.The reasons hindering the popularization and use of oil-absorbing biomass materials are summarized and the future application fields are prospected.
基金supported by the National Natural Science Foundation of China(32272910)the Shandong Provincial Postdoctoral Program for Innovative Talent(SDBX2021013)the Shandong Province Agricultural Industry Technology(SDAIT-11-08)。
文摘Background The poultry industry needs effective antibiotic alternatives to control outbreaks of necrotic enteritis(NE)caused by Clostridium perfringens.Methods The aim of this study was to investigate the effects of dietary supplementation with Macleaya cordata extract(MCE)on the immune function and gut microbiota of broilers with NE.A total of 2881-day-old broiler chicks were randomly assigned to a 2×2 factorial arrangement with two concentrations of dietary MCE supplementation(0 or 350 mg/kg of diet)and two disease challenge statuses(control or NE).Results The results revealed that NE significantly increased the feed conversion rate(FCR),mortality,intestinal lesion score,the levels of IL-1β,IL-17 and IFN-γ/IL-4 in serum and IL-17/IL-10 in the jejunal mucosa,m RNA levels of TLR2,IFN-γand p Ig R in the jejunum,and Clostridium perfringens concentrations in the cecum.NE significantly decreased the body weight(BW),body weight gain(BWG),jejunal villus height,V/C,m RNA level of AMPK-α1 in jejunum,IL-4 level in the jejunal mucosa and lactic acid bacteria abundance in the cecum.MCE significantly increased BW,BWG,jejunal villus height,V/C,m RNA levels of occludin,ZO-1 and AMPK-α1 in the jejunum,the levels of Ig A and Ig G in serum and IL-10 in the jejunal mucosa and m RNA levels of NF-κB,IL-10 and MHC-II in the jejunum.Additionally,MCE significantly decreased the FCR,mortality,intestinal lesion score,jejunal crypt depth,the levels of IFN-γand IL-17 in serum and IL-17/IL-10 in the jejunal mucosa,Clostridium perfringens concentrations in the cecum,and m RNA levels of IL-17/IL-10 in the jejunum.Moreover,NE significantly increased the abundance of bacteria that are associated with inflammation,obesity and depression(Alistipes,Barnesiella,Intestinimonas,RF39 and UCG-005)and significantly decreased the abundance of short-chain fatty acid(SCFA)-producing bacteria(Anaerotruncus,Butyricicoccus and Bacteroides)in the cecum.MCE significantly increased the abundance of SCFA-producing bacteria(Streptococcus,Ruminococcus_torques_group and Lachnospiraceae_NK4A136_group)and significantly reduced the abundance of bacteria that are associated with inflammation and obesity(Alistipes,Barnesiella and UCG-010)in the cecum.In the cecum of broilers with NE,the relative abundance of Barnesiella and Alistipes was higher and that of Lachnoclostridium and Shuttleworthia was lower.Interestingly,these trends were reversed by the addition of MCE to the diet.Spearman correlation analysis showed that Barnesiella and Alistipes were associated with enhanced intestinal inflammation and inhibited growth performance,whereas Lachnoclostridium and Shuttleworthia were associated with anti-inflammatory effects.Conclusions MCE ameliorated the loss of growth performance in broiler chickens with NE,probably by regulating the intestinal barrier,immune function,and gut microbiota.
基金funded by the National Key Research and Development Program of China(2023YFD150050504)the Key Research and Development Program of Shandong Province,China(2022SFGC0301)the Strategic Priority Research Program of the Chinese Academy of Sciences-Development and Application Technology of Special Package Fertilizer for Improving Albic Soil(XDA28100203)。
文摘Soil microorganisms play critical roles in ecosystem function.However,the relative impact of the potassium(K)fertilizer gradient on the microbial community in wheat-maize double-cropping systems remains unclear.In this long-term field experiment(2008-2019),we researched bacterial and fungal diversity,composition,and community assemblage in the soil along a K fertilizer gradient in the wheat season(K0,no K fertilizer;K1,45 kg ha^(-1) K_(2)O;K_(2),90 kg ha^(-1)K_(2)O;K3,135 kg ha^(-1)K_(2)O)and in the maize season(K0,no K fertilizer;K_(1),150 kg ha^(-1) K_(2)O;K_(2),300 kg ha^(-1)K_(2)O;K_(3),450 kg ha^(-1)K_(2)O)using bacterial 16S rRNA and fungal internally transcribed spacer(ITS)data.We observed that environmental variables,such as mean annual soil temperature(MAT)and precipitation,available K,ammonium,nitrate,and organic matter,impacted the soil bacterial and fungal communities,and their impacts varied with fertilizer treatments and crop species.Furthermore,the relative abundance of bacteria involved in soil nutrient transformation(phylum Actinobacteria and class Alphaproteobacteria)in the wheat season was significantly increased compared to the maize season,and the optimal K fertilizer dosage(K2 treatment)boosted the relative bacterial abundance of soil nutrient transformation(genus Lactobacillus)and soil denitrification(phylum Proteobacteria)bacteria in the wheat season.The abundance of the soil bacterial community promoting root growth and nutrient absorption(genus Herbaspirillum)in the maize season was improved compared to the wheat season,and the K2 treatment enhanced the bacterial abundance of soil nutrient transformation(genus MND1)and soil nitrogen cycling(genus Nitrospira)genera in the maize season.The results indicated that the bacterial and fungal communities in the double-cropping system exhibited variable sensitivities and assembly mechanisms along a K fertilizer gradient,and microhabitats explained the largest amount of the variation in crop yields,and improved wheat?maize yields by 11.2-22.6 and 9.2-23.8%with K addition,respectively.These modes are shaped contemporaneously by the different meteorological factors and soil nutrient changes in the K fertilizer gradients.
基金This research was supported by the Funding Project of Chinese Central Government Guiding to the Guangxi Local Science and Technology Development(GUIKEZY21195021)the Natural Science Fund for Distinguished Young Scholars of Guangxi Zhuang Autonomous Region of China(2019GXNSFFA245011)+3 种基金the Funding Project of Chinese Central Government Guiding to the Nanning Local Science and Technology Development(20231012)the Funding Projects of Guangxi Key Research and Development Plan(GUIKE AB23075173)the Funding Project of Technological Development from Angel Yeast(Chongzuo)Co.,Ltd.(JS1006020230722019)the Innovation Project of Guangxi Graduate Education(YCBZ2021012).
文摘The application of microorganisms as probiotics is limited due to lack of safety evaluation.Here,a novel multi-stress-tolerant yeast Meyerozyma guilliermondii GXDK6 with aroma-producing properties was identified from marine mangrove microorganisms.Its safety and probiotic properties were assessed in accordance with phenotype and whole-genome sequencing analysis.Results showed that the genes and phenotypic expression of related virulence,antibiotic resistance and retroelement were rarely found.Hyphal morphogenesis genes(SIT4,HOG1,SPA2,ERK1,ICL1,CST20,HSP104,TPS1,and RHO1)and phospholipase secretion gene(VPS4)were annotated.True hyphae and phospholipase were absent.Only one retroelement(Tad1-65_BG)was found.Major biogenic amines(BAs)encoding genes were absent,except for spermidine synthase(JA9_002594),spermine synthase(JA9_004690),and tyrosine decarboxylase(inx).The production of single BAs and total BAs was far below the food-defined thresholds.GXDK6 had no resistance to common antifungal drugs.Virulence enzymes,such as gelatinase,DNase,hemolytic,lecithinase,and thrombin were absent.Acute toxicity test with mice demonstrated that GXDK6 is safe.GXDK6 has a good reproduction ability in the simulation gastrointestinal tract.GXDK6 also has a strong antioxidant ability,β-glucosidase,and inulinase activity.To sum up,GXDK6 is considered as a safe probiotic for human consumption and food fermentation.
基金the financial support from the Open Fund Project of the National Oil Shale Exploitation Research and Development Center,China(No.33550000-22-ZC0613-0255)the Graduate Student Innovation and Practical Ability Training Program of Xi’an Shiyou University(No.YCS23213098)+3 种基金the National Natural Science Foundation of China(No.52274039)the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2024JC-YBMS-085)the CNPC Innovation Found(No.2022DQ02-0402)The authors also thank the Modern Analysis and Test Center of Xi’an Shiyou University for their help with the characterization of catalysts and analysis of products.
文摘Tungstated zirconia(WO_(3)/ZrO_(2))solid acid catalysts with different WO_(3) contents were prepared by a hydrothermal method and then used in the catalytic aquathermolysis of heavy oil from Xinjiang.The WO_(3)/ZrO_(2) solid acid catalyst was characterized by a range of characterization methods,including X-ray diffraction,NH3-temperature programmed desorption,and pyridine infrared spectroscopy.The WO_(3) content of the WO_(3)/ZrO_(2) catalysts had an important impact on the structure and property of the catalysts.When the WO_(3) mass fraction was 20%,it facilitated the formation of tetragonal zirconia,thereby enhancing the creation of robust acidic sites.Acidity is considered to have a strong impact on the catalytic performance of the aquathermolysis of heavy oil.When the catalyst containing 20%WO_(3) was used to catalyze the aquathermolysis of heavy oil under conditions of 14.5 MPa,340℃,and 24 h,the viscosity of heavy oil decreased from 47266 to 5398 mPa·s and the viscosity reduction rate reached 88.6%.The physicochemical properties of heavy oil before and after the aquathermolysis were analyzed using a saturates,aromatics,resins,and asphaltenes analysis,gas chromatography,elemental analysis,densimeter etc.After the aquathermolysis,the saturate and aromatic contents significantly increased from 43.3%to 48.35%and 19.47%to 21.88%,respectively,with large reductions in the content of resin and asphaltene from 28.22%to 25.06%and 5.36%to 2.03%,respectively.The sulfur and nitrogen contents,and the density of the oil were significantly decreased.These factors were likely the main reasons for promoting the viscosity reduction of heavy oil during the aquathermolysis over the WO_(3)/ZrO_(2) solid acid catalysts.
基金The Natural Science Foundation of Henan Province(222300420083)the Opening Foundation of State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource of Xinjiang University(KFKT2021004)。
文摘The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems.
基金supported by Fundamental Research Fund for Central Universities (SWUKR22014)National Natural Science Foundation of China (NSFC 32170478, 32370478)+2 种基金“Special Fund for Youth Team of Southwest University” (SWU-XJPY202302)Youth Top Talent Program of Chongqing (CQYC 20220510893) to Zhiyong YUANNational Natural Science Foundation of China (NSFC 31900323) to Jinmin CHEN。
文摘A new species of the genus Brachytarsophrys,named Brachytarsophrys wenshanensis sp.nov.,has been identified in southeastern Yunnan,China.This new species can be readily distinguished from other known congeners by both morphological criterion and molecular analysis of three mitochondrial gene segments:16S,COI,and Cytb.This classification is based on the following morphological characters:(1)medium body size(SVL 83.8–85.1 mm in two adult males);(2)enormous head,with head width nearly 1.2 times the length;(3)tongue pyriform,feebly notched;(4)non-meeting heels;(5)male lacking nuptial pad;(6)tibiotarsal articulation reaching angle of mouth when hindlimbs are extended forward alongside the body;(7)absence of outer metatarsal tubercle,inner metatarsal tubercle elliptic and approximately equal to first toe;(8)rudimentary toe webbing,webbing formula:Ⅰ(2–)–(2^(++))Ⅱ(2^(–))–(3^(++))Ⅲ(2^(½))–(4)Ⅳ(4^(+))–(2^(⅔))V;(9)lateral fringes narrow;(10)dermal ridge or glandular fold on dorsum absent;(11)pectoral glands distinct and irregular,femoral gland small.Our work increases the number of species within the genus Brachytarsophrys to 9.
基金supported by the Key R&D projects in Xinjiang (2022B01042)Research and Innovation Team Cultivation Plan of Yili Normal University (#CXZK2021002)。
文摘Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources.
基金supported by the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),which received financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20204010600470)the Korea Evaluation Institute of Industrial Technology(KEIT)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20018608)Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2022R1I1A1A01064236)
文摘To unlock the full potential of PSCs,machine learning(ML)was implemented in this research to predict the optimal combination of mesoporous-titanium dioxide(mp-TiO_(2))and weight percentage(wt%)of phenyl-C_(61)-butyric acid methyl ester(PCBM),along with the current density(J_(sc)),open-circuit voltage(V_(oc)),fill factor(ff),and energy conversion efficiency(ECE).Then,the combination that yielded the highest predicted ECE was selected as a reference to fabricate PCBM-PSCs with nanopatterned TiO_(2)layer.Subsequently,the PCBM-PSCs with nanopatterned TiO_(2)layers were fabricated and characterized to further understand the effects of nanopatterning depth and wt%of PCBM on PSCs.Experimentally,the highest ECE of 17.338%is achieved at 127 nm nanopatterning depth and 0.10 wt%of PCBM,where the J_(sc),V_(oc),and ff are 22.877 mA cm^(-2),0.963 V,and 0.787,respectively.The measured J_(sc),V_(oc),ff,and ECE values show consistencies with the ML prediction.Hence,these findings not only revealed the potential of ML to be used as a preliminary investigation to navigate the research of PSCs but also highlighted that nanopatterning depth has a significant impact on J_(sc),and the incorporation of PCBM on perovskite layer influenced the V_(oc)and ff,which further boosted the performance of PSCs.
基金financial support from the Chang Jiang Scholars Program (51073047)the National Natural Science Foundation of China (51773049)+5 种基金the China Aerospace Science and Technology Corporation-Harbin Institute of Technology Joint Center for Technology Innovation Fund (HIT15-1A01)the Harbin City Science and Technology Projects (2013DB4BP031 and RC2014QN017035)the Natural Science Foundation of Shandong Province of China (ZR2023QE071)the College Students’ Innovation and Entrepreneurship Training Program Projects of Shandong Province (S202211065048)the Scientific Research Foundation of Qingdao University (DC1900009425)the China Postdoctoral Science Foundation (2022TQ0282)
文摘Developing advanced battery-type materials with abundant active sites,high conductivity,versatile morphologies,and hierarchically porous structures is crucial for realizing high-quality hybrid supercapacitors.Herein,heterogeneous FeS@NiS is synthesized by cationic Co doping via surface-structure engineering.The density functional theory(DFT)theoretical calculations are firstly performed to predict the advantages of Co dopant by improving the OH^(−)adsorption properties and adjusting electronic structure,benefiting ions/electron transfer.The dynamic surface evolution is further explored which demonstrates that CoFeS@CoNiS could be quickly reconstructed to Ni(Co)Fe_(2)O_(4)during the charging process,while the unstable structure of the amorphous Ni(Co)Fe_(2)O_(4)results in partial conversion to Ni/Co/FeOOH at high potentials,which contributes to the more reactive active site and good structural stability.Thus,the free-standing electrode reveals excellent electrochemical performance with a superior capacity(335.6 mA h g^(−1),2684 F g^(−1))at 3 A g^(−1).Furthermore,the as-fabricated device shows a quality energy density of 78.1 W h kg^(−1)at a power density of 750 W kg^(−1)and excellent cycle life of 92.1%capacitance retention after 5000 cycles.This work offers a facile strategy to construct versatile morphological structures using electrochemical activation and holds promising applications in energy-related fields.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Nos.52073224,32201491)the Textile Vision Basic Research Program of China(No.J202110)+3 种基金the Scientific Research Project of Shaanxi Provincial Education Department,China(No.22JC035)the Advanced Manufacturing Technology Program of Xi’an Science and Technology Bureau,China(No.21XJZZ0019)the Research Fund for the Doctoral Program of Xi’an Polytechnic University(No.BS202053)the Youth Innovation Team of Shaanxi Universities and Institute of Flexible electronics and Intelligent Textile.
文摘MXene,a transition metal carbide/nitride,has been prominent as an ideal electrochemical active material for supercapacitors.However,the low MXene load limits its practical applications.As environmental concerns and sustainable development become more widely recognized,it is necessary to explore a greener and cleaner technology to recycle textile by-products such as cotton.The present study proposes an effective 3D fabrication method that uses MXene to fabricate waste denim felt into ultralight and flexible supercapacitors through needling and carbonization.The 3D structure provided more sites for loading MXene onto Z-directional fiber bundles,resulting in more efficient ion exchange between the electrolyte and electrodes.Furthermore,the carbonization process removed the specific adverse groups in MXenes,further improving the specific capacitance,energy density,power density and electrical conductivity of supercapacitors.The electrodes achieve a maximum specific capacitance of 1748.5 mF cm-2 and demonstrate remarkable cycling stability maintaining more than 94%after 15,000 galvanostatic charge/discharge cycles.Besides,the obtained supercapacitors present a maximum specific capacitance of 577.5 mF cm^(-2),energy density of 80.2μWh cm^(-2)and power density of 3 mW cm^(-2),respectively.The resulting supercapacitors can be used to develop smart wearable power devices such as smartwatches,laying the foundation for a novel strategy of utilizing waste cotton in a high-quality manner.
文摘Due to the spectral and spatial properties of pervious and impervious surfaces,image classification and information extraction in detailed,small-scale mapping of urban surface materials is quite difficult and complex.Emerging methods and innovations in image classification have centred on object-based classification techniques and various segmentation techniques,which are fundamental to this approach.Consequently,the purpose of this study is to determine which classification method is most suitable for extracting linear features in terms of techniques and performance by comparing two classification methods,pixel-based approach and object-based approach,using WorldView-2 satellite imagery to specifically highlight linear features such as roads,building edges,and road dividers.Two applied algorithms,including support vector machines(SVM)and ruled-based,were evaluated using two distinct software.A comparison of the results reveals that the object-based classification has a higher overall resolution than the pixel-based classification.The output of rule-based classificationwas satisfactory,with an overall accuracy of 88.6%(ENVI)and 92.2%(e-Cognition).The SVM classification result contained misclassified impervious surfaces and other urban features,as well as mixed objects.This classification achieved an overall accuracy of 75.1%.Nonetheless,this study provides an excellent overview for understanding the differences in their performances on the same data,as well as a comparison of the software employed.
文摘气候变化背景下进一步开展高污染地区气溶胶直接辐射效应的研究,对于该地区的大气环境监测、气候变化评估以及农业生产布局等具有重要意义。利用全球气溶胶监测网(AERONET)多年观测资料以及MODIS地表反照率数据,借助6S(Second Simulation of a Satellite Signal in the Solar Spectrum)辐射传输模式,定量评估2001年1月-2016年12月中国AERONET北京、香河和太湖3个典型高污染站点多年晴空条件下的气溶胶直接辐射效应。结果表明:(1)各个高污染站点气溶胶PM2.5质量浓度季节变化特征差异明显,秋冬污染较为严重,其中高值主要集中在1月、2月、11月和12月;(2)与无气溶胶影响相比,气溶胶致使各站点地表直接辐射年际变化较明显。在气溶胶影响下,北京、香河和太湖3个站点2001-2016年地表日平均直接辐射年际变化较明显,均呈波动增加趋势,且香河站日平均直接辐射增加最大(621.14W·m-2),太湖站次之(743.29W·m-2),北京站最小(488.14W·m-2)。(3)气溶胶影响下各站点地表直接辐射明显降低,且气溶胶对各站点影响差异较大。2001-2016年,北京、太湖和香河站年平均地表直接辐射分别降低32.29%、24.01%和15.07%。其中,气溶胶对北京站的地表直接辐射影响最大,香河站最小。(4)近15a来,北京、香河和太湖3个站点气溶胶地表辐射效应均呈现增加趋势。