This study identifies the carrying state and value of Tibet’s resource and environmental carrying capacity.A new theoretical framework is proposed for exploring the resource and environmental carrying capacity based ...This study identifies the carrying state and value of Tibet’s resource and environmental carrying capacity.A new theoretical framework is proposed for exploring the resource and environmental carrying capacity based on two perspectives of“growth limit”and“stability of Human-Earth relationship system”.On this basis,an ideal growth model that accords with the“short board”effect is established to predict the population limitation.Analytical results show that the holistic state of resource and environmental carrying capacity in Tibet is in jeopardy.From 2010 to 2016,Tibet’s carrying state continued to decline,moreover,the negative forces still overwhelm the positive forces.Although the resource reserves still have room for more population,the environmental capacity and ecological capacity have been overloaded.Meanwhile,the Human-Earth relationship system is in an unstable stage.Three scenarios that respond to different socioeconomic developments are implemented to predict the population limitation of resource and environmental carrying capacity in Tibet;thus,authors argue that Tibet should keep its population size within 4 million around 2025.This research will provide reference for sustainable development and resources and environmental conservation in Tibet.展开更多
With the purpose of cultivating students' "STS" quality,multiple teaching methods were discussed,including the students-oriented teaching,group discussion,case teaching,interactive teaching,little teache...With the purpose of cultivating students' "STS" quality,multiple teaching methods were discussed,including the students-oriented teaching,group discussion,case teaching,interactive teaching,little teacher teaching,practical teaching and flexible assessment,etc.,thus the students learning initiative could be greatly stimulated,their comprehensive ability can be improved,and more excellent talents can be cultivated.展开更多
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in...Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.展开更多
Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as...Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.展开更多
Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau...Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.展开更多
The development and vigor of soil microorganisms in terrestrial ecosystems are frequently constrained by the limited availability of essential elements such as carbon(C),nitrogen(N),and phosphorus(P).In this study,we ...The development and vigor of soil microorganisms in terrestrial ecosystems are frequently constrained by the limited availability of essential elements such as carbon(C),nitrogen(N),and phosphorus(P).In this study,we investigated the impact of long-term application of varying levels of organic manure,low(7.5 Mg ha^(−1)yr^(−1)),moderate(15.0 Mg ha^(−1)yr^(−1)),and high(22.5 Mg ha^(−1)yr^(−1)),on the stoichiometry of enzymes and the structures of the microbial communities in soybean rhizospheric and bulk soils.The main goal of this research was to examine how soil microbial resource limitations in the rhizosphere respond to different long-term fertilization strategies.The soil enzymatic activities were quantified,and the structure of the microbial community was assessed by analyzing phospholipid fatty acid profiles.When compared to the bulk soil,the rhizospheric soil had significant increases in microbial biomass carbon(MBC),nitrogen(MBN),and phosphorus(MBP),with MBC increasing by 54.19 to 72.86%,MBN by 47.30 to 48.17%,and MBP by 17.37 to 208.47%.Compared with the unfertilized control(CK),the total microbial biomasses of the rhizospheric(increased by 22.80 to 90.82%)and bulk soils(increased by 10.57 to 60.54%)both exhibited increases with the application of organic manure,and the rhizospheric biomass was higher than that of bulk soil.Compared with bulk soil,the activities of C-,N-and P-acquiring enzymes of rhizospheric soil increased by 22.49,14.88,and 29.45%under high levels of organic manure,respectively.Analyses of vector length,vector angle,and scatter plots revealed that both rhizospheric and bulk soils exhibited limitations in terms of both carbon(C)and phosphorus(P)availability.The results of partial least-squares path modelling indicated that the rhizospheric soil exhibited a more pronounced response to the rate of manure application than the bulk soil.The varying reactions of rhizospheric and bulk soils to the extended application of organic manure underscore the crucial function of the rhizosphere in mitigating limitations related to microbial resources,particularly in the context of different organic manure application rates.展开更多
For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological...For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.展开更多
Investigation of rarely studied gravel layers found in the loess in Shandong Province,eastern China,reveals the fabric characteristics of two gravel layers(G1,G2)and the sedimentary characteristics of loess at the typ...Investigation of rarely studied gravel layers found in the loess in Shandong Province,eastern China,reveals the fabric characteristics of two gravel layers(G1,G2)and the sedimentary characteristics of loess at the typical and well-preserved Heiyu section(HY),where,to determine the paleoclimatic changes during Marine Isotope Stage 3a.Optically stimulated luminescence dates of the HY formation range from 0.26±0.02 ka to 39.00±2.00 ka.In addition,the ages of G1 and G2 were estimated using the Bayesian model to be 39.60-40.50 and 29.00-29.50 ka.G1 and G2 are mainly composed of fine and medium gravel,both of which were subangular to subrounded limestone,with gravel directions to NE and E.The average flow velocity,average depth,and flood peak flow of G1 are 1.10 m/s,0.49 m,and 37.04 m^(3)/s,respectively,calculated using the flow energy method,whereas those of G2 are 0.98 m/s,0.38 m,and 18.38 m^(3)/s,respectively.Analysis of climate proxy indices show that the sedimentary environment of the gravel and loess in HY might be a regional response to global change.展开更多
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
Phytoliths are extensively utilized as an archaeobotanical indicator in paleovegetation reconstruction and environmental archaeology. Over the past two decades, numerous phytolith morphotypes, particularly those exhib...Phytoliths are extensively utilized as an archaeobotanical indicator in paleovegetation reconstruction and environmental archaeology. Over the past two decades, numerous phytolith morphotypes, particularly those exhibiting diagnostic morphological features and over representative of source plants at the genus and species levels, were discovered and reported. These advancements have significantly contributed to phytolith-based vegetation reconstruction on different timescales, enhanced our understanding of prehistoric plant utilization, and elucidated cultivation and domestication processes of key crops in ancient agriculture. However, there are still inconsistencies and misunderstandings regarding the morphological characteristics of diagnostic phytoliths in various plant groups. This review highlighted the standardization in the classification and description of phytolith morphotypes, and summarized the advancements in phytolith morphology research over the past two decades. Morphological illustrations of diagnostic phytoliths from various plant groups, particularly key crops and their relatives from dryland and rice agriculture in East Asia, were presented as references for phytolith identification and application. Finally, this review proposes future directions for phytolith morphological studies, emphasizing the comprehensive consideration of anatomical structure and morphometric parameters, as well as the need for extensive research on modern plant phytoliths and control experiments on phytolith growth.展开更多
We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB)....We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB).We acme energy-efficient technologies for sustainable energy and material recovery and applications.The technologies of thermochemical conversion(TC),biochemical conversion(BC),electrochemical conversion(EC),and photochemical conversion(PTC)are summarized for HALUB.Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg^(-1)and total benefit of 749$/ton biomass via TC.Specific surface area of biochar reached 3000 m^(2)g^(-1)via pyrolytic carbonization of waste bean dregs.Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%.Besides,lignocellulosic biomass can contribute to a current density of 672 mA m^(-2)via EC.Bioresource can be 100%selectively synthesized via electrocatalysis through EC and PTC.Machine learning,techno-economic analysis,and life cycle analysis are essential to various upgrading approaches of HALUB.Sustainable biomaterials,sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis,microfluidic and micro/nanomotors beyond are also highlighted.New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.展开更多
Understanding and predicting the impact of the global energy transition and the United Nations Sustainable Development Goals (SDGs) on global mineral demand and African supply is challenging. This study uses a resourc...Understanding and predicting the impact of the global energy transition and the United Nations Sustainable Development Goals (SDGs) on global mineral demand and African supply is challenging. This study uses a resource nexus approach to investigate and analyze the impact of this transition on energy and water demand and CO2 emissions using three annual material demand scenarios. The results indicate that African mining will consume more energy by 2050, leading to an increase in cumulative demand for energy (from 98 to 14,577 TWh) and water (from 15,013 to 223,000 million m3), as well as CO2 emissions (1318 and 19,561 Gg CO2e). In contrast, only a modest increase in energy demand (207 TWh) will be required by 2050 to achieve the SDGs. Therefore, the African mining industry should reduce its energy consumption and invest more in the renewable energy sector to support the global energy transition.展开更多
Recently,the field of rural vitalization has received extensive research attention.However,only few studies have proposed an approach to rural vitalization from the coupling perspective of township construction and th...Recently,the field of rural vitalization has received extensive research attention.However,only few studies have proposed an approach to rural vitalization from the coupling perspective of township construction and the resource environment.Taking Jiangsu Province of China as the study area,we constructed index systems of township construction function types and resource environments.Based on 875 township study units in Jiangsu,we characterized the township construction function type and resource environment and analyzed the dynamic process of their coupling from 2005 to 2017.The results are as follows:1)the townships of planting and breeding types in Jiangsu were mainly distributed in northern and central Jiangsu;the townships of business travel,industry,and integrated types were mainly distributed in southern Jiangsu;and the townships of ecological type were irregularly distributed throughout Jiangsu.2)Resource environment factors and township construction function types in Jiangsu clustered based on their location with some overlap.3)Spatial variability in the degree of coupling level between township construction and the resource environment in Jiangsu was not apparent,and low coupling levels accounted for most of the study units.The sum of the number of medium and high coupling townships in southern,central,and northern Jiangsu was roughly equal,and the coupling level between township construction and the resource environment in southern Jiangsu evolved remained unchanged,whereas that in the central and northern Jiangsu became imbalanced.4)In Jiangsu,township construction was mainly constrained by water resources,and the constraint parameters gradually increase.Large variability in resource environment constraint was observed in northern,central,and southern Jiangsu for different township construction function types.Based on these findings,we proposed the implementation of targeted rural vitalization strategies.展开更多
With the degradation of natural resources and environment caused by industrial development in some developing countries,the requirement of implementing a“social ecological”approach to development is imminent.Resourc...With the degradation of natural resources and environment caused by industrial development in some developing countries,the requirement of implementing a“social ecological”approach to development is imminent.Resource and environment carrying capacity provides a means of assessing regional development potential by measuring regional sustainable development in terms of economy,population and resources&environment.This study develops a conceptual framework for resource and environment carrying capacity estimation to support the co-development planning of industries,population and resources&environment.First,the framework constructs an index system for evaluating importance of industry or influence based on the role of industry played in the local socio-economic system.Then,the framework computes the quantitative relations through the importance of local industry,population size and resource utilization and environment effects,and subsequently estimates the resource and environment carrying capacity of the study area.With a particular attention to its land resources,water resources and environment,the Tibet case study shows that:the non-ferrous metal mining,tourism,liquor and refined tea industries play a pillar role in the Tibet’s socio-economic system;under each industrial structure,land resource carrying capacity is the weakest,and water resources carrying capacity is the strongest;to focus on tourism will improve local resource and environment carrying capacity.The research results provide a solid guide for Tibet government’s co-actions in industrial restructuring,ecological protection,and the pursuit of economic development.This study will contribute to bridge the gap between theoretical research and practical applications of resource and environment carrying capacity,and help local governments plan the regional“socio-ecological”sustainable development.展开更多
Spatial and environmental processes are two ecological processes that have attracted considerable attention in plant community assembly,depending on sampling scale and life history.However,the processes that determine...Spatial and environmental processes are two ecological processes that have attracted considerable attention in plant community assembly,depending on sampling scale and life history.However,the processes that determine community assembly have not been studied in the karst region of southwest China.In this study,a 25-ha(500 m×500 m)monitoring plot within the subtropical climax forest in the karst region was established and canonical correspondence analysis was used to reveal the effects of topography and soil on the spatial patterns of tree community assembly.Our study suggests that spatial processes dominate species composition and the combined effects of spatial and environmental processes play an important role.Overall interpretation rate increases with enlarging the sampling scale.However,the pattern of variation partitioning was similar in different life stages.Environmental variables significantly affected species composition at different sampling sizes and life histories and had a higher interpretation rate of species composition on larger s ampling sizes.Topographic wetness index was the most important variable to explain species composition of the environmental variables.These results suggest that it is necessary to consider the relative importance of environmental and spatial factors on community assembly to better understand,conserve,and manage subtropical karst forests.展开更多
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods...Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.展开更多
Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The r...Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.展开更多
Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r...Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.展开更多
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev...Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.展开更多
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif...Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.展开更多
基金supported by the Specific Project of National Key Research and Development Program of China (Grants No.2016YFC0503506)the Strategy Priority Research Program of Chinese Academy of Sciences (Grants No. XDA20010103)
文摘This study identifies the carrying state and value of Tibet’s resource and environmental carrying capacity.A new theoretical framework is proposed for exploring the resource and environmental carrying capacity based on two perspectives of“growth limit”and“stability of Human-Earth relationship system”.On this basis,an ideal growth model that accords with the“short board”effect is established to predict the population limitation.Analytical results show that the holistic state of resource and environmental carrying capacity in Tibet is in jeopardy.From 2010 to 2016,Tibet’s carrying state continued to decline,moreover,the negative forces still overwhelm the positive forces.Although the resource reserves still have room for more population,the environmental capacity and ecological capacity have been overloaded.Meanwhile,the Human-Earth relationship system is in an unstable stage.Three scenarios that respond to different socioeconomic developments are implemented to predict the population limitation of resource and environmental carrying capacity in Tibet;thus,authors argue that Tibet should keep its population size within 4 million around 2025.This research will provide reference for sustainable development and resources and environmental conservation in Tibet.
基金Supported by Education Teaching Program of Southwest University(2010JY094)
文摘With the purpose of cultivating students' "STS" quality,multiple teaching methods were discussed,including the students-oriented teaching,group discussion,case teaching,interactive teaching,little teacher teaching,practical teaching and flexible assessment,etc.,thus the students learning initiative could be greatly stimulated,their comprehensive ability can be improved,and more excellent talents can be cultivated.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31870613)Guizhou Province High-level Innovative Talents Training Plan Project(2016)5661.
文摘Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.
基金Under the auspices of the National Natural Science Foundation of China(No.42271279,41931293,41801175)。
文摘Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.
基金the Xinjiang Science and Technology Support Project Plan(2022E02026)the Xinjiang Agricultural University Graduate Research and Innovation Programme(XJAUGRI2023049).
文摘Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.
基金the National Key R&D Program of China(2022YFD1500100)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28070100)+1 种基金the Young Scholars Program in Regional Development,Chinese Academy of Sciences(2022-027)the China Agriculture Research System(CARS-04).
文摘The development and vigor of soil microorganisms in terrestrial ecosystems are frequently constrained by the limited availability of essential elements such as carbon(C),nitrogen(N),and phosphorus(P).In this study,we investigated the impact of long-term application of varying levels of organic manure,low(7.5 Mg ha^(−1)yr^(−1)),moderate(15.0 Mg ha^(−1)yr^(−1)),and high(22.5 Mg ha^(−1)yr^(−1)),on the stoichiometry of enzymes and the structures of the microbial communities in soybean rhizospheric and bulk soils.The main goal of this research was to examine how soil microbial resource limitations in the rhizosphere respond to different long-term fertilization strategies.The soil enzymatic activities were quantified,and the structure of the microbial community was assessed by analyzing phospholipid fatty acid profiles.When compared to the bulk soil,the rhizospheric soil had significant increases in microbial biomass carbon(MBC),nitrogen(MBN),and phosphorus(MBP),with MBC increasing by 54.19 to 72.86%,MBN by 47.30 to 48.17%,and MBP by 17.37 to 208.47%.Compared with the unfertilized control(CK),the total microbial biomasses of the rhizospheric(increased by 22.80 to 90.82%)and bulk soils(increased by 10.57 to 60.54%)both exhibited increases with the application of organic manure,and the rhizospheric biomass was higher than that of bulk soil.Compared with bulk soil,the activities of C-,N-and P-acquiring enzymes of rhizospheric soil increased by 22.49,14.88,and 29.45%under high levels of organic manure,respectively.Analyses of vector length,vector angle,and scatter plots revealed that both rhizospheric and bulk soils exhibited limitations in terms of both carbon(C)and phosphorus(P)availability.The results of partial least-squares path modelling indicated that the rhizospheric soil exhibited a more pronounced response to the rate of manure application than the bulk soil.The varying reactions of rhizospheric and bulk soils to the extended application of organic manure underscore the crucial function of the rhizosphere in mitigating limitations related to microbial resources,particularly in the context of different organic manure application rates.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297266)Doctoral Research Foundation of Guilin University of Technology(GUTQDJJ2007059)Guangxi Hidden Metallic Mineral Exploration Key Laboratory。
文摘For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.
基金the National Natural Science Foundation of China(Grant Nos.41472159,41172160,41371537).
文摘Investigation of rarely studied gravel layers found in the loess in Shandong Province,eastern China,reveals the fabric characteristics of two gravel layers(G1,G2)and the sedimentary characteristics of loess at the typical and well-preserved Heiyu section(HY),where,to determine the paleoclimatic changes during Marine Isotope Stage 3a.Optically stimulated luminescence dates of the HY formation range from 0.26±0.02 ka to 39.00±2.00 ka.In addition,the ages of G1 and G2 were estimated using the Bayesian model to be 39.60-40.50 and 29.00-29.50 ka.G1 and G2 are mainly composed of fine and medium gravel,both of which were subangular to subrounded limestone,with gravel directions to NE and E.The average flow velocity,average depth,and flood peak flow of G1 are 1.10 m/s,0.49 m,and 37.04 m^(3)/s,respectively,calculated using the flow energy method,whereas those of G2 are 0.98 m/s,0.38 m,and 18.38 m^(3)/s,respectively.Analysis of climate proxy indices show that the sedimentary environment of the gravel and loess in HY might be a regional response to global change.
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
文摘Phytoliths are extensively utilized as an archaeobotanical indicator in paleovegetation reconstruction and environmental archaeology. Over the past two decades, numerous phytolith morphotypes, particularly those exhibiting diagnostic morphological features and over representative of source plants at the genus and species levels, were discovered and reported. These advancements have significantly contributed to phytolith-based vegetation reconstruction on different timescales, enhanced our understanding of prehistoric plant utilization, and elucidated cultivation and domestication processes of key crops in ancient agriculture. However, there are still inconsistencies and misunderstandings regarding the morphological characteristics of diagnostic phytoliths in various plant groups. This review highlighted the standardization in the classification and description of phytolith morphotypes, and summarized the advancements in phytolith morphology research over the past two decades. Morphological illustrations of diagnostic phytoliths from various plant groups, particularly key crops and their relatives from dryland and rice agriculture in East Asia, were presented as references for phytolith identification and application. Finally, this review proposes future directions for phytolith morphological studies, emphasizing the comprehensive consideration of anatomical structure and morphometric parameters, as well as the need for extensive research on modern plant phytoliths and control experiments on phytolith growth.
基金the support from Harvard/MITthe support funded by the National Research Foundation(NRF),Prime Minister’s Office,Singapore,under its Campus for Research Excellence and Technological Enterprise(CREATE)program,Grant Number R-706-001-102-281the funding support from Harbin Institute of Technology,China,Grant Number FRFCU5710053121。
文摘We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB).We acme energy-efficient technologies for sustainable energy and material recovery and applications.The technologies of thermochemical conversion(TC),biochemical conversion(BC),electrochemical conversion(EC),and photochemical conversion(PTC)are summarized for HALUB.Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg^(-1)and total benefit of 749$/ton biomass via TC.Specific surface area of biochar reached 3000 m^(2)g^(-1)via pyrolytic carbonization of waste bean dregs.Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%.Besides,lignocellulosic biomass can contribute to a current density of 672 mA m^(-2)via EC.Bioresource can be 100%selectively synthesized via electrocatalysis through EC and PTC.Machine learning,techno-economic analysis,and life cycle analysis are essential to various upgrading approaches of HALUB.Sustainable biomaterials,sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis,microfluidic and micro/nanomotors beyond are also highlighted.New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
文摘Understanding and predicting the impact of the global energy transition and the United Nations Sustainable Development Goals (SDGs) on global mineral demand and African supply is challenging. This study uses a resource nexus approach to investigate and analyze the impact of this transition on energy and water demand and CO2 emissions using three annual material demand scenarios. The results indicate that African mining will consume more energy by 2050, leading to an increase in cumulative demand for energy (from 98 to 14,577 TWh) and water (from 15,013 to 223,000 million m3), as well as CO2 emissions (1318 and 19,561 Gg CO2e). In contrast, only a modest increase in energy demand (207 TWh) will be required by 2050 to achieve the SDGs. Therefore, the African mining industry should reduce its energy consumption and invest more in the renewable energy sector to support the global energy transition.
基金Under the auspices of National Key R&D Program of China(No.2018YFD1100100)。
文摘Recently,the field of rural vitalization has received extensive research attention.However,only few studies have proposed an approach to rural vitalization from the coupling perspective of township construction and the resource environment.Taking Jiangsu Province of China as the study area,we constructed index systems of township construction function types and resource environments.Based on 875 township study units in Jiangsu,we characterized the township construction function type and resource environment and analyzed the dynamic process of their coupling from 2005 to 2017.The results are as follows:1)the townships of planting and breeding types in Jiangsu were mainly distributed in northern and central Jiangsu;the townships of business travel,industry,and integrated types were mainly distributed in southern Jiangsu;and the townships of ecological type were irregularly distributed throughout Jiangsu.2)Resource environment factors and township construction function types in Jiangsu clustered based on their location with some overlap.3)Spatial variability in the degree of coupling level between township construction and the resource environment in Jiangsu was not apparent,and low coupling levels accounted for most of the study units.The sum of the number of medium and high coupling townships in southern,central,and northern Jiangsu was roughly equal,and the coupling level between township construction and the resource environment in southern Jiangsu evolved remained unchanged,whereas that in the central and northern Jiangsu became imbalanced.4)In Jiangsu,township construction was mainly constrained by water resources,and the constraint parameters gradually increase.Large variability in resource environment constraint was observed in northern,central,and southern Jiangsu for different township construction function types.Based on these findings,we proposed the implementation of targeted rural vitalization strategies.
文摘With the degradation of natural resources and environment caused by industrial development in some developing countries,the requirement of implementing a“social ecological”approach to development is imminent.Resource and environment carrying capacity provides a means of assessing regional development potential by measuring regional sustainable development in terms of economy,population and resources&environment.This study develops a conceptual framework for resource and environment carrying capacity estimation to support the co-development planning of industries,population and resources&environment.First,the framework constructs an index system for evaluating importance of industry or influence based on the role of industry played in the local socio-economic system.Then,the framework computes the quantitative relations through the importance of local industry,population size and resource utilization and environment effects,and subsequently estimates the resource and environment carrying capacity of the study area.With a particular attention to its land resources,water resources and environment,the Tibet case study shows that:the non-ferrous metal mining,tourism,liquor and refined tea industries play a pillar role in the Tibet’s socio-economic system;under each industrial structure,land resource carrying capacity is the weakest,and water resources carrying capacity is the strongest;to focus on tourism will improve local resource and environment carrying capacity.The research results provide a solid guide for Tibet government’s co-actions in industrial restructuring,ecological protection,and the pursuit of economic development.This study will contribute to bridge the gap between theoretical research and practical applications of resource and environment carrying capacity,and help local governments plan the regional“socio-ecological”sustainable development.
基金supported by the National Natural Science Foundation of China (42071073,31971487)Youth Innovation Promotion Association of the Chinese Academy of Sciences (2021366)+2 种基金Guangxi Key Research and Development Program (AB17129009)the Hechi Distinguished Expert Program to Fuping Zengthe Guangxi Bagui Scholarship Program to Dejun Li。
文摘Spatial and environmental processes are two ecological processes that have attracted considerable attention in plant community assembly,depending on sampling scale and life history.However,the processes that determine community assembly have not been studied in the karst region of southwest China.In this study,a 25-ha(500 m×500 m)monitoring plot within the subtropical climax forest in the karst region was established and canonical correspondence analysis was used to reveal the effects of topography and soil on the spatial patterns of tree community assembly.Our study suggests that spatial processes dominate species composition and the combined effects of spatial and environmental processes play an important role.Overall interpretation rate increases with enlarging the sampling scale.However,the pattern of variation partitioning was similar in different life stages.Environmental variables significantly affected species composition at different sampling sizes and life histories and had a higher interpretation rate of species composition on larger s ampling sizes.Topographic wetness index was the most important variable to explain species composition of the environmental variables.These results suggest that it is necessary to consider the relative importance of environmental and spatial factors on community assembly to better understand,conserve,and manage subtropical karst forests.
基金The authors gratefully acknowledge the financial support pro-vided by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.41907232)the National Science Fund for Distinguished Young Scholars of China(Grant No.42225702)the State Key Program of National Natural Science Foundation of China(Grant No.41230636).
文摘Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.
基金the National Natural Science Foundation of China(Grant No.52270154)the National Engineering Research Center for Bioenergy,Harbin Institute of Technology,China(Grant No.2021C001).
文摘Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.
基金supported by the National Natural Science Foundation of China(42271360 and 42271399)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2020QNRC001)the Fundamental Research Funds for the Central Universities,China(2662021JC013,CCNU22QN018)。
文摘Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.
基金supported by a grant from the Standardization and Integration of Resources Information for Seed-cluster in Hub-Spoke Material Bank Program,Rural Development Administration,Republic of Korea(PJ01587004).
文摘Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.
基金supported by the National Key Research and Development Program of China(2022YFD2301403-2)the Major Special Project of Anhui Province,China(2021d06050003)+2 种基金the Postdoctoral Foundation of Anhui Province,China(2022B638)the Special Project of Zhongke Bengbu Technology Transfer Center,China(ZKBB202103)the Grant of the President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences(YZJJ2023QN37)。
文摘Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.