期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Photo Acoustic Energy Applications for the Detection of Human Arterial Blockages via Multiple Skin/Bone Layers, a Non-Invasive Approach
1
作者 Monika Kakani Neeraj Rathi +4 位作者 Ahdy Helmy Ashok Kumar Thella M. D. James Rizkalla Paul Salama Maher E. Rizkalla 《World Journal of Cardiovascular Diseases》 2017年第8期251-270,共20页
The impact of arterial narrowing/blocking caused by plaque buildup in arteries leads to many life-threatening consequences. This is recognized as a cause in heart attacks and peripheral vascular disease. Diagnosing th... The impact of arterial narrowing/blocking caused by plaque buildup in arteries leads to many life-threatening consequences. This is recognized as a cause in heart attacks and peripheral vascular disease. Diagnosing the illness is only feasible after symptoms have presented to the patient. Currently, the standard for visualizing coronary arteries is through angiography, which may have complications, and impact on the healthcare system. Furthermore, cardiac catheterization may also places high health risks, given its overall invasiveness. Cardiac arrhythmias, infection, and contrast dye nephrotoxicity are recognized complications within this process. Therefore, a noninvasive approach may have potentials to reduce patient complications, finances surrounding healthcare, and more efficient patient care through earlier screening and diagnosing. This research addresses a new approach using photoacoustic (PA) imaging. The transmission properties of atherosclerosis within walls of arteries, can be exploited using photo acoustics, to better visualize and characterize the degree and severity of atherosclerosis. The delivered energy is absorbed by components of the vascular tissue converted into heat, leading to transient thermos elastic expansion, which creates an acoustic emission. The thermal response was analyzed for its fall and recovery times that are attributed to the artery fat type. The control parameters, including the frequency, penetration depth, energy levels, and tissue layer sizes, for multilayered structures were considered. The structures investigated were fatty infiltrate within the artery, blood, bones, and skin, within frequency range from 1 MHz to 3 MHz, and typical tissue sizes in the milli to centimeter range. As high as 14 MPas in the acoustic pressure at 1 MHz, resulted in temperature difference of up to 3.4 K. When the operating frequency was altered to 2 MHz, the temperature changed to 23 K. Furthermore, when the frequency was changed to 3 MHz, the temperature moved to 43 K. The changes in temperatures were for nearly 1 second duration. The results obtained in this study suggest that there is high potential for practical models using flexible substrate with infra-red sensors and acoustic devices. 展开更多
关键词 Acoustic Thermal CARDIOVASCULAR Diagnosis MEMS/NEMS COMSOL MULTILAYERS NON-INVASIVE
下载PDF
Auto-thermal reforming of acetic acid for hydrogen production by Zn_(x)Ni_(y)CrO_(m±δ) catalysts:Effect of Cr promoted Ni-Zn intermetallic compound
2
作者 Xuanyi Jia Xiaomin Hu +3 位作者 Qiao Wang Baiquan Chen Xingyue Xie Lihong Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期216-221,共6页
A series of Zn_(x)Ni_(y)CrO_(m±δ)catalysts were synthesized via a typical co-precipitation method,in which Zn-Cr layered double hydroxides(LDHs)were found and Ni-Zn intermetallic compound(IMC)was formed after re... A series of Zn_(x)Ni_(y)CrO_(m±δ)catalysts were synthesized via a typical co-precipitation method,in which Zn-Cr layered double hydroxides(LDHs)were found and Ni-Zn intermetallic compound(IMC)was formed after reduction in hydrogen.During auto-thermal reforming(ATR)of acetic acid(HAc),the Ni-Zn IMC was transformed into Ni/(amorphous-ZnO)-ZnCr_(2)O_(4) species with uniformed distribution and appropriate interaction within these Ni-Zn-Cr-O species;besides,the adsorbed oxygen promoted the activation and transfer of oxygen species;therefore,deactivation by oxidation,sintering and coking was inhibited.And the optimized Zn_(2.37)Ni_(0.63)CrO_(4.5±δ)catalyst presented high activity and stability in a 45-h ATR test with HAc conversion near 100%and hydrogen yield at 2.7 mol-H_(2)/mol-HAc,showing potential for hydrogen production via ATR of HAc. 展开更多
关键词 Ni-Zn intermetallic compound Zn-Cr layered double hydroxide Hydrogen production Auto-thermal reforming Biomass CATALYSIS
下载PDF
Distributed Bio-Hydrogen Refueling Stations 被引量:1
3
作者 Peter J. Schubert 《Journal of Earth Science and Engineering》 2016年第4期183-190,共8页
Hydrogen fuel cell cars are now available for lease and for sale. Renewable hydrogen fuel can be produced from water via electrolysis, or from biomass via gasification. Electrolysis is power-hungry with high demand fr... Hydrogen fuel cell cars are now available for lease and for sale. Renewable hydrogen fuel can be produced from water via electrolysis, or from biomass via gasification. Electrolysis is power-hungry with high demand from solar or wind power. Gasification, however, can be energy self-sufficient using a recently-patented thermochemical conversion technology known as I-HPG (indirectly-heated pyrolytic gasification). I-HPG produces a tar-free syngas from non-food woody biomass. This means the balance of plant can be small, so the overall system is economical at modest sizes. This makes it possible to produce renewable hydrogen from local agricultural residues; sufficient to create distributed refueling stations wherever there is feedstock. This work describes the specifics of a novel bio-hydrogen refueling station whereby the syngas produced has much of the hydrogen extracted with the remainder powering a generator to provide the electric power to the I-HPG system. Thus the system runs continuously. When paired with another new technology, moderate-pressure storage of hydrogen in porous silicon, there is the potential to also power the refueling operation. Such systems can be operated independently. It is even possible to design an energy self-sufficient farm where all electric power, heat, and hydrogen fuel is produced from the non-food residues of agricultural operations. No water is required, and the carbon footprint is negative, or at least neutral. 展开更多
关键词 BIOMASS HYDROGEN distributed generation fuel cell vehicle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部