期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Computational Approach for Automated Segmentation and Classification of Region of Interest in Lateral Breast Thermograms
1
作者 Dennies Tsietso Abid Yahya +2 位作者 Ravi Samikannu Basit Qureshi Muhammad Babar 《Computers, Materials & Continua》 SCIE EI 2024年第9期4749-4765,共17页
Breast cancer is one of the major health issues with high mortality rates and a substantial impact on patients and healthcare systems worldwide.Various Computer-Aided Diagnosis(CAD)tools,based on breast thermograms,ha... Breast cancer is one of the major health issues with high mortality rates and a substantial impact on patients and healthcare systems worldwide.Various Computer-Aided Diagnosis(CAD)tools,based on breast thermograms,have been developed for early detection of this disease.However,accurately segmenting the Region of Interest(ROI)fromthermograms remains challenging.This paper presents an approach that leverages image acquisition protocol parameters to identify the lateral breast region and estimate its bottomboundary using a second-degree polynomial.The proposed method demonstrated high efficacy,achieving an impressive Jaccard coefficient of 86%and a Dice index of 92%when evaluated against manually created ground truths.Textural features were extracted from each view’s ROI,with significant features selected via Mutual Information for training Multi-Layer Perceptron(MLP)and K-Nearest Neighbors(KNN)classifiers.Our findings revealed that the MLP classifier outperformed the KNN,achieving an accuracy of 86%,a specificity of 100%,and an Area Under the Curve(AUC)of 0.85.The consistency of the method across both sides of the breast suggests its viability as an auto-segmentation tool.Furthermore,the classification results suggests that lateral views of breast thermograms harbor valuable features that can significantly aid in the early detection of breast cancer. 展开更多
关键词 Breast cancer CAD machine learning ROI segmentation THERMOGRAPHY
下载PDF
A Deep Learning Based Sentiment Analytic Model for the Prediction of Traffic Accidents
2
作者 Nadeem Malik Saud Altaf +2 位作者 Muhammad Usman Tariq Ashir Ahmed Muhammad Babar 《Computers, Materials & Continua》 SCIE EI 2023年第11期1599-1615,共17页
The severity of traffic accidents is a serious global concern,particularly in developing nations.Knowing the main causes and contributing circumstances may reduce the severity of traffic accidents.There exist many mac... The severity of traffic accidents is a serious global concern,particularly in developing nations.Knowing the main causes and contributing circumstances may reduce the severity of traffic accidents.There exist many machine learning models and decision support systems to predict road accidents by using datasets from different social media forums such as Twitter,blogs and Facebook.Although such approaches are popular,there exists an issue of data management and low prediction accuracy.This article presented a deep learning-based sentiment analytic model known as Extra-large Network Bi-directional long short term memory(XLNet-Bi-LSTM)to predict traffic collisions based on data collected from social media.Initially,a Tweet dataset has been formed by using an exhaustive keyword-based searching strategy.In the next phase,two different types of features named as individual tokens and pair tokens have been obtained by using POS tagging and association rule mining.The output of this phase has been forwarded to a three-layer deep learning model for final prediction.Numerous experiment has been performed to test the efficiency of the proposed XLNet-Bi-LSTM model.It has been shown that the proposed model achieved 94.2%prediction accuracy. 展开更多
关键词 ACCIDENT XLNet Bi-LSTM association rule mining TWITTER
下载PDF
Emotion Recognition from Occluded Facial Images Using Deep Ensemble Model
3
作者 Zia Ullah Muhammad Ismail Mohmand +5 位作者 Sadaqat ur Rehman Muhammad Zubair Maha Driss Wadii Boulila Rayan Sheikh Ibrahim Alwawi 《Computers, Materials & Continua》 SCIE EI 2022年第12期4465-4487,共23页
Facial expression recognition has been a hot topic for decades,but high intraclass variation makes it challenging.To overcome intraclass variation for visual recognition,we introduce a novel fusion methodology,in whic... Facial expression recognition has been a hot topic for decades,but high intraclass variation makes it challenging.To overcome intraclass variation for visual recognition,we introduce a novel fusion methodology,in which the proposed model first extract features followed by feature fusion.Specifically,RestNet-50,VGG-19,and Inception-V3 is used to ensure feature learning followed by feature fusion.Finally,the three feature extraction models are utilized using Ensemble Learning techniques for final expression classification.The representation learnt by the proposed methodology is robust to occlusions and pose variations and offers promising accuracy.To evaluate the efficiency of the proposed model,we use two wild benchmark datasets Real-world Affective Faces Database(RAF-DB)and AffectNet for facial expression recognition.The proposed model classifies the emotions into seven different categories namely:happiness,anger,fear,disgust,sadness,surprise,and neutral.Furthermore,the performance of the proposed model is also compared with other algorithms focusing on the analysis of computational cost,convergence and accuracy based on a standard problem specific to classification applications. 展开更多
关键词 Ensemble learning emotion recognition feature fusion OCCLUSION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部