An experimental programm of investigating the cutting capacity of PDC flat cutters in very hard rock has been performed. Experiments include both the cutting of PDC fixed at different angles on the granite core or bar...An experimental programm of investigating the cutting capacity of PDC flat cutters in very hard rock has been performed. Experiments include both the cutting of PDC fixed at different angles on the granite core or bar and linear cutting with different static thrust on the block of granite. The effects of the rough degree of rock surface, cutting angles, and static thrust on the cutting capacity of PDC in very hard rock were investigated and analyzed. The results show that the single mode of rotary drilling using PDC cutters is not applied for very hard rocks.展开更多
The capability of several types of flat PDC cutters to withstand combined loads were tested and evaluated by the impact and cutting of single PDC cutter on granite in a linear impact cutting table. The primary failure...The capability of several types of flat PDC cutters to withstand combined loads were tested and evaluated by the impact and cutting of single PDC cutter on granite in a linear impact cutting table. The primary failure modes of PDC cutters withstanding different combined loads were investigated and analyzed. The suggestions of enhancing PDC cutters to be suitable for drilling very hard rock have been made.展开更多
In this study, two full-size concrete wails were tested and analyzed to demonstrate the effectiveness of a chemically reactive enamel (CRE) coating in improving their mechanical behavior under blast loading: one wi...In this study, two full-size concrete wails were tested and analyzed to demonstrate the effectiveness of a chemically reactive enamel (CRE) coating in improving their mechanical behavior under blast loading: one with CRE-coated rebar and the other with uncoated rebar. Each wall was subjected in sequence to four explosive loads with equivalent 2, 4, 6-trinitrotoluene (TNT) charge weights of 1.82, 4.54, 13.6, and 20.4 kg. A finite element model of each wall under a close-in blast load was developed and validated with pressure and strain measurements, and used to predict rebar stresses and concrete surface sWain distributions of the wall. The test results and visual inspections consistently indicated that, compared with the barrier wall with uncoated reinforcement, the wall with CRE-coated rebar has fewer concrete cracks on the front and back faces, more effective stress transfers from concrete to steel rebar, and stronger connections with its concrete base. The concrete surface strain distributions predicted by the model under various loading conditions are in good agreement with the crack patterns observed during the tests.展开更多
基金Project (5 0 1740 5 6)supportedbytheNationalNaturalScienceFoundationofChina project (DE -FG0 3 )supportedbytheNovatekundertheDepartmentofEnergy USA
文摘An experimental programm of investigating the cutting capacity of PDC flat cutters in very hard rock has been performed. Experiments include both the cutting of PDC fixed at different angles on the granite core or bar and linear cutting with different static thrust on the block of granite. The effects of the rough degree of rock surface, cutting angles, and static thrust on the cutting capacity of PDC in very hard rock were investigated and analyzed. The results show that the single mode of rotary drilling using PDC cutters is not applied for very hard rocks.
基金Project(5 0 1740 5 6)supportedbytheNationalNaturalScienceFoundationofChina project(De -FG0 3 )supportedbytheNevatakUndertheDepartmentofEnergy USA
文摘The capability of several types of flat PDC cutters to withstand combined loads were tested and evaluated by the impact and cutting of single PDC cutter on granite in a linear impact cutting table. The primary failure modes of PDC cutters withstanding different combined loads were investigated and analyzed. The suggestions of enhancing PDC cutters to be suitable for drilling very hard rock have been made.
基金Project supported by the National Natural Science Foundation of China (Nos. 51379186 and 51522905), the Zhejiang Provincial Natural Science Foundation of China (No. LR15E090001), and the Leonard Wood Institute under Award (No. LWI61009), USA
文摘In this study, two full-size concrete wails were tested and analyzed to demonstrate the effectiveness of a chemically reactive enamel (CRE) coating in improving their mechanical behavior under blast loading: one with CRE-coated rebar and the other with uncoated rebar. Each wall was subjected in sequence to four explosive loads with equivalent 2, 4, 6-trinitrotoluene (TNT) charge weights of 1.82, 4.54, 13.6, and 20.4 kg. A finite element model of each wall under a close-in blast load was developed and validated with pressure and strain measurements, and used to predict rebar stresses and concrete surface sWain distributions of the wall. The test results and visual inspections consistently indicated that, compared with the barrier wall with uncoated reinforcement, the wall with CRE-coated rebar has fewer concrete cracks on the front and back faces, more effective stress transfers from concrete to steel rebar, and stronger connections with its concrete base. The concrete surface strain distributions predicted by the model under various loading conditions are in good agreement with the crack patterns observed during the tests.