Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current...Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current arrival picking methods.Thus,a real-time arrival picking method of MS signals is constructed based on a convolutional-recurrent neural network(CRNN).This method fully utilizes the advantages of convolutional layers and gated recurrent units(GRU)in extracting short-and long-term features,in order to create a precise and lightweight arrival picking structure.Then,the synthetic signals with field noises are used to evaluate the hyperparameters of the CRNN model and obtain an optimal CRNN model.The actual operation on various devices indicates that compared with the U-Net method,the CRNN method achieves faster arrival picking with less performance consumption.An application of large underground caverns in the Yebatan hydropower station(YBT)project shows that compared with the short-term average/long-term average(STA/LTA),Akaike information criterion(AIC)and U-Net methods,the CRNN method has the highest accuracy within four sampling points,which is 87.44%for P-wave and 91.29%for S-wave,respectively.The sum of mean absolute errors(MAESUM)of the CRNN method is 4.22 sampling points,which is lower than that of the other methods.Among the four methods,the MS sources location calculated based on the CRNN method shows the best consistency with the actual failure,which occurs at the junction of the shaft and the second gallery.Thus,the proposed method can pick up P-and S-arrival accurately and rapidly,providing a reference for rock failure analysis and evaluation in engineering applications.展开更多
The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of roug...The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of rough rock fractures during shear-seepage processes to reveal how dilatancy and fracture asperities affect these phenomena.To achieve this,an improved shear-flow model(SFM)is proposed with the incorporation of dilatancy effect and asperities.In particular,shear dilatancy is accounted for in both the elastic and plastic stages,in contrast to some existing models that only consider it in the elastic stage.Depending on the computation approaches for the peak dilatancy angle,three different versions of the SFM are derived based on Mohr-Coulomb,joint roughness coefficient-joint compressive strength(JRC-JCS),and Grasselli’s theories.Notably,this is a new attempt that utilizes Grasselli’s model in shearseepage analysis.An advanced parameter optimization method is introduced to accurately determine model parameters,addressing the issue of local optima inherent in some conventional methods.Then,model performance is evaluated against existing experimental results.The findings demonstrate that the SFM effectively reproduces the shear-seepage characteristics of rock fracture across a wide range of stress levels.Further sensitivity analysis reveals how dilatancy and asperity affect hydraulic properties.The relation between hydro-mechanical properties(dilatancy displacement and hydraulic conductivity)and asperity parameters is analysed.Several profound understandings of the shear-seepage process are obtained by exploring the phenomenon under various conditions.展开更多
The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backf...The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backfill-rock composites under three constant normal loads,compared with the unfilled rock.To investigate the macro-and meso-failure characteristics of the samples in the shear tests,the cracking behavior of samples was recorded by a high-speed camera and acoustic emission monitoring.In parallel with the experimental test,the numerical models of backfill-rock composites and unfilled rock were established using the discrete element method to analyze the continuous-discontinuous shearing process.Based on the damage mechanics and statistics,a novel shear constitutive model was proposed to describe mechanical behavior.The results show that backfill-rock composites had a special bimodal phenomenon of shearing load-deformation curve,i.e.the first shearing peak corresponded to rock break and the second shearing peak induced by the broken of aeolian sand-cement/fly ash paste backfill.Moreover,the shearing characteristic curves of the backfill-rock composites could be roughly divided into four stages,i.e.the shear failure of the specimens experienced:stage I:stress concentration;stage II:crack propagation;stage III:crack coalescence;stage IV:shearing friction.The numerical simulation shows that the existence of aeolian sand-cement/fly ash paste backfill inevitably altered the coalescence type and failure mode of the specimens and had a strengthening effect on the shear strength of backfillrock composites.Based on damage mechanics and statistics,a shear constitutive model was proposed to describe the shear fracture characteristics of specimens,especially the bimodal phenomenon.Finally,the micro-and meso-mechanisms of shear failure were discussed by combining the micro-test and numerical results.The research can advance the better understanding of the shear behavior of backfill-rock composites and contribute to the safety of mining engineering.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This ...The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This study prepares reconstituted WGS with different mica contents by removing natural mica in theWGS,and then mixes it with commercial mica powders.The geotechnical behavior as well as the microstructures of the mixtures are characterized.The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits.However,high mica content in WGS was found to be associated with undesirable mechanical properties,including increased compressibility,disintegration,and swelling potential,as well as poor compactability and low effective frictional angle.Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed withinWGS.Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential.Pores among the plates give the soil high water retention and high Atterberg limits.Large pores are also generated by soil particles with bridging packing,which enhances the permeability and water-soil interactions upon immersion.This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils.展开更多
The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers an...The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.展开更多
2D profile lines play a critical role in cost-effectively evaluating rock joint properties and shear strength.However, the interval(ΔI_(L)) between these lines significantly impacts roughness and shear strength asses...2D profile lines play a critical role in cost-effectively evaluating rock joint properties and shear strength.However, the interval(ΔI_(L)) between these lines significantly impacts roughness and shear strength assessments. A detailed study of 45 joint samples using four statistical measures across 500 different ΔI_(L)values identified a clear line interval effect with two stages: stable and fluctuation-discrete.Further statistical analysis showed a linear relationship between the error bounds of four parameters,shear strength evaluation, and their corresponding maximum ΔI_(L)values, where the gradient k of this linear relationship was influenced by the basic friction angle and normal stress. Accounting for these factors,lower-limit linear models were employed to determine the optimal ΔI_(L)values that met error tolerances(1%–10%) for all metrics and shear strength. The study also explored the consistent size effect on joints regardless of ΔI_(L)changes, revealing three types of size effects based on morphological heterogeneity.Notably, larger joints required generally higher ΔI_(L)to maintain the predefined error limits, suggesting an increased interval for large joint analyses. Consequently, this research provides a basis for determining the optimal ΔI_(L), improving accuracy in 2D profile line assessments of joint characteristics.展开更多
During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in...During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in the surrounding rock.However,the weakening of strength due to pure stress rotation has not yet been investigated.Based on fracture mechanics,an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations.The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed.The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage.As the differential stress increases,stress rotation is more likely to induce rock damage,leading to a transition from brittle to plastic failure,characterized by wider fractures and a more complex fracture network.Overall,a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress.The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel.This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs.展开更多
The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing t...The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.展开更多
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t...Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.展开更多
The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challe...The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.展开更多
The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the c...The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.展开更多
In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)...In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)model that can simultaneously consider the fracture evolution and non-Darcy flow dynamics in studying the thermo-hydro-mechanical(THM)coupling processes for heat extraction in geothermal reservoir.We further employed the model on the Habanero enhanced geothermal systems(EGS)project located in Australia.First,our findings illustrate a clear spatial-temporal variation in the thermal stress and pressure perturbations,as well as uneven spatial distribution of shear failure in 3D fracture networks.Activated shear failure is mainly concentrated in the first fracture cluster.Secondly,channeling flow have also been observed in DFNs during heat extraction and are further intensified by the expansion of fractures driven by thermal stresses.Moreover,the combined effect of non-Darcy flow and fracture evolution triggers a rapid decline in the resulting heat rate and temperature.The NR-DFN model framework and the Habanero EGS's results illustrate the importance of both fracture evolution and non-Darcy flow on the efficiency of EGS production and have the potential to promote the development of more sustainable and efficient EGS operations for stakeholders.展开更多
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme...To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.展开更多
Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive man- ufacturing, that is, from a file viewed with a computer to a ...Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive man- ufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) com- pressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in produc- ing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the sim- ulation of similar material modeling experiments.展开更多
The presence of geological structures such as faults, joints, and dykes has been observed near excavation boundaries in many rockburst case histories. In this paper, the role of discontinuities around tunnels in rockb...The presence of geological structures such as faults, joints, and dykes has been observed near excavation boundaries in many rockburst case histories. In this paper, the role of discontinuities around tunnels in rockburst occurrence was studied. For this purpose, the Abaqus explicit code was used to simulate dynamic rock failure in deep tunnels. Material heterogeneity was considered using Python scripting in Abaqus. Rockbursts near fault regions in deep tunnels under static and dynamic loads were studied.Several tunnel models with and without faults were built and static and dynamic loads were used to simulate rock failure. The velocity and the released kinetic energy of failed rocks, the failure zone around the tunnel, and the deformed mesh were studied to identify stable and unstable rock failures. Compared with models without discontinuities, the results showed that the velocity and the released kinetic energy of failed rocks were higher, the failure zone around the tunnel was larger, and the mesh was more deformed in the models with discontinuities, indicating that rock failure in the models with discontinuities was more violent. The modeling results confirm that the presence of geological structures in the vicinity of deep excavations could be one of the major influence factors for the occurrence of rockburst. It can explain localized rockburst occurrence in civil tunnels and mining drifts. The presented methodology in this paper for rockburst analysis can be useful for rockburst anticipation and control during mining and tunneling in highly stressed ground.展开更多
The generalized mixture rule(GMR) is used to provide a unified framework for describing Young’s(E),shear(G) and bulk(K) moduli, Lame parameter(l), and P- and S-wave velocities(Vpand Vs) as a function of porosity in v...The generalized mixture rule(GMR) is used to provide a unified framework for describing Young’s(E),shear(G) and bulk(K) moduli, Lame parameter(l), and P- and S-wave velocities(Vpand Vs) as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and l of each material are systematically different and display consistent correlations with the Poisson’s ratio of the nonporous material(v0). For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson’s ratio(n) remains constant is at v0=0.2, and J(G) > J(E) > J(K) > J(l) and J(G) < J(E) < J(K) < J(l) for materials with v0> 0.2 and v0< 0.2, respectively.J(Vs) > J(Vp) and J(Vs) < J(Vp) for the materials with v0> 0.2 and v0< 0.2, respectively. The effective n increases, decreases and remains unchanged with increasing porosity for the materials with v0< 0.2,v0> 0.2 and v0=0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the n fixed point decreases nonlinearly with decreasing pore aspect ratio(a: width/length). With increasing depth or pressure, cracks with smaller a values are progressively closed, making the n fixed point rise and finally reach to the point at v0=0.2.展开更多
Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive to...Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.展开更多
Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not on...Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not only affects the engineering safety critically but also improves the maintenance costs. This paper takes the main rail roadway with severely deformation in China's Zaoquan coal mine as an example to study the long-term deformation tendency and damage zone by means of in-situ deformation monitoring and acoustic wave testing technique. A three-dimensional finite element model reflecting the engineering geological condition and initial design scheme is established by ABAQUS. Then, on the basis of field monitoring deformation data, the surrounding rock geotechnical and theological parameters of the roadway are obtained by back analysis. A combined supporting technology with U-shaped steel support and anchor-grouting is proposed for the surrounding soft rock. The numerical simulation of the combined supporting technology and in-situ deformation monitoring results show that the soft rock surrounding the roadway has been held effectively.展开更多
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
基金We acknowledge the funding support from National Natural Science Foundation of China(Grant No.42077263).
文摘Accurately picking P-and S-wave arrivals of microseismic(MS)signals in real-time directly influences the early warning of rock mass failure.A common contradiction between accuracy and computation exists in the current arrival picking methods.Thus,a real-time arrival picking method of MS signals is constructed based on a convolutional-recurrent neural network(CRNN).This method fully utilizes the advantages of convolutional layers and gated recurrent units(GRU)in extracting short-and long-term features,in order to create a precise and lightweight arrival picking structure.Then,the synthetic signals with field noises are used to evaluate the hyperparameters of the CRNN model and obtain an optimal CRNN model.The actual operation on various devices indicates that compared with the U-Net method,the CRNN method achieves faster arrival picking with less performance consumption.An application of large underground caverns in the Yebatan hydropower station(YBT)project shows that compared with the short-term average/long-term average(STA/LTA),Akaike information criterion(AIC)and U-Net methods,the CRNN method has the highest accuracy within four sampling points,which is 87.44%for P-wave and 91.29%for S-wave,respectively.The sum of mean absolute errors(MAESUM)of the CRNN method is 4.22 sampling points,which is lower than that of the other methods.Among the four methods,the MS sources location calculated based on the CRNN method shows the best consistency with the actual failure,which occurs at the junction of the shaft and the second gallery.Thus,the proposed method can pick up P-and S-arrival accurately and rapidly,providing a reference for rock failure analysis and evaluation in engineering applications.
基金support from the National Natural Science Foundation of China(Grant Nos.51991392 and 42293355).
文摘The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of rough rock fractures during shear-seepage processes to reveal how dilatancy and fracture asperities affect these phenomena.To achieve this,an improved shear-flow model(SFM)is proposed with the incorporation of dilatancy effect and asperities.In particular,shear dilatancy is accounted for in both the elastic and plastic stages,in contrast to some existing models that only consider it in the elastic stage.Depending on the computation approaches for the peak dilatancy angle,three different versions of the SFM are derived based on Mohr-Coulomb,joint roughness coefficient-joint compressive strength(JRC-JCS),and Grasselli’s theories.Notably,this is a new attempt that utilizes Grasselli’s model in shearseepage analysis.An advanced parameter optimization method is introduced to accurately determine model parameters,addressing the issue of local optima inherent in some conventional methods.Then,model performance is evaluated against existing experimental results.The findings demonstrate that the SFM effectively reproduces the shear-seepage characteristics of rock fracture across a wide range of stress levels.Further sensitivity analysis reveals how dilatancy and asperity affect hydraulic properties.The relation between hydro-mechanical properties(dilatancy displacement and hydraulic conductivity)and asperity parameters is analysed.Several profound understandings of the shear-seepage process are obtained by exploring the phenomenon under various conditions.
文摘The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backfill-rock composites under three constant normal loads,compared with the unfilled rock.To investigate the macro-and meso-failure characteristics of the samples in the shear tests,the cracking behavior of samples was recorded by a high-speed camera and acoustic emission monitoring.In parallel with the experimental test,the numerical models of backfill-rock composites and unfilled rock were established using the discrete element method to analyze the continuous-discontinuous shearing process.Based on the damage mechanics and statistics,a novel shear constitutive model was proposed to describe mechanical behavior.The results show that backfill-rock composites had a special bimodal phenomenon of shearing load-deformation curve,i.e.the first shearing peak corresponded to rock break and the second shearing peak induced by the broken of aeolian sand-cement/fly ash paste backfill.Moreover,the shearing characteristic curves of the backfill-rock composites could be roughly divided into four stages,i.e.the shear failure of the specimens experienced:stage I:stress concentration;stage II:crack propagation;stage III:crack coalescence;stage IV:shearing friction.The numerical simulation shows that the existence of aeolian sand-cement/fly ash paste backfill inevitably altered the coalescence type and failure mode of the specimens and had a strengthening effect on the shear strength of backfillrock composites.Based on damage mechanics and statistics,a shear constitutive model was proposed to describe the shear fracture characteristics of specimens,especially the bimodal phenomenon.Finally,the micro-and meso-mechanisms of shear failure were discussed by combining the micro-test and numerical results.The research can advance the better understanding of the shear behavior of backfill-rock composites and contribute to the safety of mining engineering.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金The financial supports of the National Natural Science Foundation of China(Grant No.42177148)the opening fund of State Key Laboratory of Geohazard Prevention and Geo-environment Protection(Grant No.SKLGP 2023K011)Postdoctoral Research Project of Guangzhou(Grant No.20220402)are gratefully thanked.
文摘The micaceous weathered granitic soil(WGS)is frequently encountered in civil engineering worldwide,unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS.This study prepares reconstituted WGS with different mica contents by removing natural mica in theWGS,and then mixes it with commercial mica powders.The geotechnical behavior as well as the microstructures of the mixtures are characterized.The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits.However,high mica content in WGS was found to be associated with undesirable mechanical properties,including increased compressibility,disintegration,and swelling potential,as well as poor compactability and low effective frictional angle.Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed withinWGS.Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential.Pores among the plates give the soil high water retention and high Atterberg limits.Large pores are also generated by soil particles with bridging packing,which enhances the permeability and water-soil interactions upon immersion.This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils.
基金financial support from the National Key R&D Program of China(Grant No.2020YFA0711802).
文摘The mechanical characteristics and acoustic behavior of rock masses are greatly influenced by stochastic joints.In this study,numerical models of rock masses incorporating intermittent joints with different numbers and dip angles were produced using the finite element method(FEM)with the intrinsic cohesive zone model(ICZM).Then,the uniaxial compressive and wave propagation simulations were performed.The results indicate that the joint number and dip angle can affect the mechanical and acoustic properties of the models.The uniaxial compressive strength(UCS)and wave velocity of rock masses decrease monotonically as the joint number increases.However,the wave velocity grows monotonically as the joint dip angle increases.When the joint dip angle is 45°–60°,the UCS of the rock mass is lower than that of other dip angles.The wave velocity parallel to the joints is greater than that perpendicular to the joints.When the dip angle of joints remains unchanged,the UCS and wave velocity are positively related.When the joint dip angle increases,the variation amplitude of the UCS regarding the wave velocity increases.To reveal the effect of the joint distribution on the velocity,a theoretical model was also proposed.According to the theoretical wave velocity,the change in wave velocity of models with various joint numbers and dip angles was consistent with the simulation results.Furthermore,a theoretical indicator(i.e.fabric tensor)was adopted to analyze the variation of the wave velocity and UCS.
基金the National Natural Science Foundation of China(Nos.42002275 and 52325905)the Natural Science Foundation of Zhejiang Province(No.LQ24D020012)+2 种基金the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(No.SKLGME023007)Open Fund of Badong National Observation and Research Station of Geohazards(No.BNORSG202308)the Shaoxing Science and Technology Plan Project(No.2022A13003).
文摘2D profile lines play a critical role in cost-effectively evaluating rock joint properties and shear strength.However, the interval(ΔI_(L)) between these lines significantly impacts roughness and shear strength assessments. A detailed study of 45 joint samples using four statistical measures across 500 different ΔI_(L)values identified a clear line interval effect with two stages: stable and fluctuation-discrete.Further statistical analysis showed a linear relationship between the error bounds of four parameters,shear strength evaluation, and their corresponding maximum ΔI_(L)values, where the gradient k of this linear relationship was influenced by the basic friction angle and normal stress. Accounting for these factors,lower-limit linear models were employed to determine the optimal ΔI_(L)values that met error tolerances(1%–10%) for all metrics and shear strength. The study also explored the consistent size effect on joints regardless of ΔI_(L)changes, revealing three types of size effects based on morphological heterogeneity.Notably, larger joints required generally higher ΔI_(L)to maintain the predefined error limits, suggesting an increased interval for large joint analyses. Consequently, this research provides a basis for determining the optimal ΔI_(L), improving accuracy in 2D profile line assessments of joint characteristics.
文摘During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in the surrounding rock.However,the weakening of strength due to pure stress rotation has not yet been investigated.Based on fracture mechanics,an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations.The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed.The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage.As the differential stress increases,stress rotation is more likely to induce rock damage,leading to a transition from brittle to plastic failure,characterized by wider fractures and a more complex fracture network.Overall,a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress.The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel.This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs.
基金financially supported by the National Key R&D Program of China(Grant No.2020YFA0711802)the Wuhan Science and Technology Bureau of China(Grant No.2023020201010081)the National Nature Science Foundation of China(Grant No.U22A20239).
文摘The technology of expansion fracturing with liquid CO_(2)(EFLCO_(2))has attracted increasing attention due to reduced vibration and damage.The disposable fracturing tube has been developed and is gradually replacing the Cardox tube.However,there is a lack of impact pressure testing of disposable tubes under real working conditions,selection of gas explosion design parameters,and systematic analysis of blasting vibration.This limitation has constrained the widespread application of disposable fracturing tubes in engineering.A joint monitoring of the pressure-time curves in the disposable tubes and boreholes was conducted.The rock-breaking effect of varying hole spacing parameters in the EFLCO_(2)design was analyzed,and a systematic study was carried out on the vibration peak value,frequency,and energy characteristics.The results show that(1)the pressure distribution characteristics,stress peak value,and duration in the disposable tubes are different from those of Cardox tubes,which show multi-peak distribution,low-pressure peak value,and short duration.The correlation between the pressure in the disposable tube,filling pressure,and liquid CO_(2)weight is established,and a theoretical calculation method for the borehole wall pressure is proposed;(2)The hole spacing in rocks of different hardness is suggested;and(3)At the same scale distance,the peak particle velocity(PPV)caused by EFLCO_(2)(PPVCO_(2))is significantly smaller than that caused by blasting(PPVexplosive).The ratio of PPVexplosive to PPVCO_(2)is a power function related to scale distance,and a distance-related zonality exist in this relationship.The frequency composition of the vibration signal caused by EFLCO_(2)is relatively simple with a narrow frequency band.Its PPV and energy are mainly concentrated in the low-frequency band.This research contributes to the optimization of disposable fracturing tubes,gas explosion design,and vibration hazard control.
基金support from the National Natural Science Foundation of China (Grant No.42207199)Zhejiang Provincial Postdoctoral Science Foundation (Grant Nos.ZJ2022155 and ZJ2022156).
文摘Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.
基金supported by the National Natural Science Foundation of China(Grant No.51874311,52174096)。
文摘The construction of coal mines often encounters deep composite soft rock roadways,which is characterized by significant deformation and poor stability.To deeply study the failure mechanism and large deformation challenges of a composite strata roadway in deep and soft rock masses,a numerical model of 3DEC tetrahedral blocks was established based on the method of rock quality designation(RQD).The results showed that original support cannot prevent asymmetric failure and large deformation due to the adverse geological environment and unsuitable support design.According to the failure characteristics,a coupling support of“NPR bolt/cable+mesh+shotcrete+steel pipe”was proposed to control the stability of the surrounding rock.The excellent mechanical properties of large deformation(approximately 400 mm)and high constant resistance force(bolt with 180 k N;cable with 350 k N)were evaluated by the tensile tests.The numerical results showed that the maximum deformation was minimized to 243 mm,and the bearing capacity of the surrounding rock of the roadway was enhanced.The field test results showed that the maximum deformation of the surrounding rock was 210 mm,and the forces of the NPR bolt and cable were stable at approximately 180 k N and 350 k N,respectively.This demonstrated the effectiveness of the coupling support with the NPR bolt and cable,which could be a guiding significance for the safety control of large deformation and failure in deep composite soft rock roadways.
基金the National Natural Science Foundation of China(Nos.52469019,52109119,and 52274145)the Chinese Postdoctoral Science Fund Project(No.2022M723408)+1 种基金the Major Project of Guangxi Science and Technology(No.AA23023016)the Technology Project of China Power Engineering Consulting Group Co.,Ltd.(No.DG2-T01-2023)。
文摘The redistribution of three-dimensional(3D)geostress during underground tunnel excavation can easily induce to shear failure along rockmass structural plane,potentially resulting in engineering disasters.However,the current understanding of rockmass shear behavior is mainly based on shear tests under2D stress without lateral stress,the shear fracture under 3D stress is unclear,and the relevant 3D shear fracture theory research is deficient.Therefore,this study conducted true triaxial cyclic loading and unloading shear tests on intact and bedded limestone under different normal stress σ_(n) and lateral stressσ_(p)to investigate the shear strength,deformation,and failure characteristics.The results indicate that under differentσ_(n)and σ_(p),the stress–strain hysteresis loop area gradually increases from nearly zero in the pre-peak stage,becomes most significant in the post-peak stage,and then becomes very small in the residual stage as the number of shear test cycles increases.The shear peak strength and failure surface roughness almost linearly increase with the increase inσ_(n),while they first increase and then gradually decrease asσ_(p)increases,with the maximum increases of 12.9%for strength and 15.1%for roughness.The shear residual strength almost linearly increases withσ_(n),but shows no significant change withσ_(p).Based on the acoustic emission characteristic parameters during the test process,the shear fracture process and microscopic failure mechanism were analyzed.As the shear stressτincreases,the acoustic emission activity,main frequency,and amplitude gradually increase,showing a significant rise during the cycle near the peak strength,while remaining almost unchanged in the residual stage.The true triaxial shear fracture process presents tensile-shear mixture failure characteristics dominated by microscopic tensile failure.Based on the test results,a 3D shear strength criterion considering the lateral stress effect was proposed,and the determination methods and evolution of the shear modulus G,cohesion c_(jp),friction angleφ_(jp),and dilation angleψjpduring rockmass shear fracture process were studied.Under differentσ_(n)andσ_(p),G first rapidly decreases and then tends to stabilize;cjp,φ_(jp),andψjpfirst increase rapidly to the maximum value,then decrease slowly,and finally remain basically unchanged.A 3D shear mechanics model considering the effects of lateral stress and shear parameter degradation was further established,and a corresponding numerical calculation program was developed based on3D discrete element software.The proposed model effectively simulates the shear failure evolution process of rockmass under true triaxial shear test,and is further applied to successfully reveal the failure characteristics of surrounding rocks with structural planes under different combinations of tunnel axis and geostress direction.
基金funded by the National Natural Science Foundation of China (No.U22A20166)Science and Technology Foundation of Guizhou Province (No.QKHJC-ZK[2023]YB074)+2 种基金Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical EngineeringInstitute of Rock and Soil MechanicsChinese Academy of Sciences (No.SKLGME022009)。
文摘In fractured geothermal reservoirs,the fracture networks and internal fluid flow behaviors can significantly impact the thermal performance.In this study,we proposed a non-Darcy rough discrete fracture network(NR-DFN)model that can simultaneously consider the fracture evolution and non-Darcy flow dynamics in studying the thermo-hydro-mechanical(THM)coupling processes for heat extraction in geothermal reservoir.We further employed the model on the Habanero enhanced geothermal systems(EGS)project located in Australia.First,our findings illustrate a clear spatial-temporal variation in the thermal stress and pressure perturbations,as well as uneven spatial distribution of shear failure in 3D fracture networks.Activated shear failure is mainly concentrated in the first fracture cluster.Secondly,channeling flow have also been observed in DFNs during heat extraction and are further intensified by the expansion of fractures driven by thermal stresses.Moreover,the combined effect of non-Darcy flow and fracture evolution triggers a rapid decline in the resulting heat rate and temperature.The NR-DFN model framework and the Habanero EGS's results illustrate the importance of both fracture evolution and non-Darcy flow on the efficiency of EGS production and have the potential to promote the development of more sustainable and efficient EGS operations for stakeholders.
基金supported by the National Key Research and Development Projects of China(No.2021YFB2600402)National Natural Science Foundation of China(Nos.52209148 and 52374119)+1 种基金the opening fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME023023)the opening fund of Key Laboratory of Water Management and Water Security for Yellow River Basin,Ministry of Water Resources(No.2023-SYSJJ-02)。
文摘To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.
基金financial support from the National Natural Science Foundation of China (Grants 41172284 and 51379202)
文摘Current developments in 3D printing (3DP) technology provide the opportunity to produce rock-like specimens and geotechnical models through additive man- ufacturing, that is, from a file viewed with a computer to a real object. This study investigated the serviceability of 3DP products as substitutes for rock specimens and rock-type materials in experimental analysis of deformation and failure in the laboratory. These experiments were performed on two types of materials as follows: (1) compressive experiments on printed sand-powder specimens in different shapes and structures, including intact cylinders, cylinders with small holes, and cuboids with pre-existing cracks, and (2) com- pressive and shearing experiments on printed polylactic acid cylinders and molded shearing blocks. These tentative tests for 3DP technology have exposed its advantages in produc- ing complicated specimens with special external forms and internal structures, the mechanical similarity of its product to rock-type material in terms of deformation and failure, and its precision in mapping shapes from the original body to the trial sample (such as a natural rock joint). These experiments and analyses also successfully demonstrate the potential and prospects of 3DP technology to assist in the deformation and failure analysis of rock-type materials, as well as in the sim- ulation of similar material modeling experiments.
基金Financial supports from the Natural Sciences and Engineering Research Council(NSERC)of Canada(CRDPJ 418932-11)Vale,LKAB,CEMI,MIRARCO,and the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z015001)for this work are gratefully acknowledged
文摘The presence of geological structures such as faults, joints, and dykes has been observed near excavation boundaries in many rockburst case histories. In this paper, the role of discontinuities around tunnels in rockburst occurrence was studied. For this purpose, the Abaqus explicit code was used to simulate dynamic rock failure in deep tunnels. Material heterogeneity was considered using Python scripting in Abaqus. Rockbursts near fault regions in deep tunnels under static and dynamic loads were studied.Several tunnel models with and without faults were built and static and dynamic loads were used to simulate rock failure. The velocity and the released kinetic energy of failed rocks, the failure zone around the tunnel, and the deformed mesh were studied to identify stable and unstable rock failures. Compared with models without discontinuities, the results showed that the velocity and the released kinetic energy of failed rocks were higher, the failure zone around the tunnel was larger, and the mesh was more deformed in the models with discontinuities, indicating that rock failure in the models with discontinuities was more violent. The modeling results confirm that the presence of geological structures in the vicinity of deep excavations could be one of the major influence factors for the occurrence of rockburst. It can explain localized rockburst occurrence in civil tunnels and mining drifts. The presented methodology in this paper for rockburst analysis can be useful for rockburst anticipation and control during mining and tunneling in highly stressed ground.
文摘The generalized mixture rule(GMR) is used to provide a unified framework for describing Young’s(E),shear(G) and bulk(K) moduli, Lame parameter(l), and P- and S-wave velocities(Vpand Vs) as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and l of each material are systematically different and display consistent correlations with the Poisson’s ratio of the nonporous material(v0). For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson’s ratio(n) remains constant is at v0=0.2, and J(G) > J(E) > J(K) > J(l) and J(G) < J(E) < J(K) < J(l) for materials with v0> 0.2 and v0< 0.2, respectively.J(Vs) > J(Vp) and J(Vs) < J(Vp) for the materials with v0> 0.2 and v0< 0.2, respectively. The effective n increases, decreases and remains unchanged with increasing porosity for the materials with v0< 0.2,v0> 0.2 and v0=0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the n fixed point decreases nonlinearly with decreasing pore aspect ratio(a: width/length). With increasing depth or pressure, cracks with smaller a values are progressively closed, making the n fixed point rise and finally reach to the point at v0=0.2.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12102312 and 41372314)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Open Foundation, Chengdu University of Technology, China (Grant No. SKLGP2021K011)
文摘Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.
基金Projects(51409154,41772299)supported by the National Natural Science Foundation of ChinaProject(J16LG03)supported by the Shandong Province Higher Educational Science and Technology Program,China+1 种基金Projects(2015JQJH106,2014TDJH103)supported by the SDUST Research Fund,ChinaProject(201630576)supported by the Tai’an Scientific and Technologic Development Project,China
文摘Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not only affects the engineering safety critically but also improves the maintenance costs. This paper takes the main rail roadway with severely deformation in China's Zaoquan coal mine as an example to study the long-term deformation tendency and damage zone by means of in-situ deformation monitoring and acoustic wave testing technique. A three-dimensional finite element model reflecting the engineering geological condition and initial design scheme is established by ABAQUS. Then, on the basis of field monitoring deformation data, the surrounding rock geotechnical and theological parameters of the roadway are obtained by back analysis. A combined supporting technology with U-shaped steel support and anchor-grouting is proposed for the surrounding soft rock. The numerical simulation of the combined supporting technology and in-situ deformation monitoring results show that the soft rock surrounding the roadway has been held effectively.