The color of compound eyes is an important biological characteristic of insects. A red eye color mutation is commonly found in the brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a...The color of compound eyes is an important biological characteristic of insects. A red eye color mutation is commonly found in the brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a serious insect pest of rice in tropical and temperate Asia. The genetic inheritance and physiological effect of the eye color mutation in the BPH have been studied, but the location of a red gene controlling the red eye mutant phenotype on a chromosome has not been elucidated. In this study, simple sequence repeats (SSRs), together with bulked segregant analysis (BSA), was performed to identify and map the location of the red gene. A total of 387 SSR markers distributed throughout the BPH autosome were used to survey two bulked DNA samples. Samples were generated from 29 brown-eyed and 29 red-eyed individuals derived from an F2 generation of a cross between brown-eyed wild type and red-eyed mutant colonies. The SSR marker BM20 was shown to be associated with the red eye mutant phenotype. Ninety-five offspring of the F2 generation were then used to map the gene. The present study constitutes the discovery of the location of the red gene, which may lead to the acquisition of the genetic determinant of the compound eye color mutation in BPH.展开更多
文摘The color of compound eyes is an important biological characteristic of insects. A red eye color mutation is commonly found in the brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a serious insect pest of rice in tropical and temperate Asia. The genetic inheritance and physiological effect of the eye color mutation in the BPH have been studied, but the location of a red gene controlling the red eye mutant phenotype on a chromosome has not been elucidated. In this study, simple sequence repeats (SSRs), together with bulked segregant analysis (BSA), was performed to identify and map the location of the red gene. A total of 387 SSR markers distributed throughout the BPH autosome were used to survey two bulked DNA samples. Samples were generated from 29 brown-eyed and 29 red-eyed individuals derived from an F2 generation of a cross between brown-eyed wild type and red-eyed mutant colonies. The SSR marker BM20 was shown to be associated with the red eye mutant phenotype. Ninety-five offspring of the F2 generation were then used to map the gene. The present study constitutes the discovery of the location of the red gene, which may lead to the acquisition of the genetic determinant of the compound eye color mutation in BPH.